Apache Avro# 1.7.7 Specification

Table of contents

I g1 0o 1 (o] o PSSP 3
2 SCNEMA DECIAIATION.ctiieeieeiieeiie ettt bbbttt e et bbb se e e 3
2.1 PIIMITIVE TYPES. ittt sttt sttt bbbt e et et st sbenne e s 3
2.2 COMPIEX TYPES...ceeueeteeeeterieeie ettt ettt st b et e e e e e e s e b e s bt b e saeeseese e s e e e e e nnenne e 3
2.3 NBIMES......ccee et e s e e e s e e e sabe e e s b e e e e ane e s ane e nne e e nre e s anreeaa 6
P = =S PRSP R 7
3 Data SEri@liZBLION.cceeieiiiiese et a et e b 7
I I =00 o |11 LSRR 8
3.2 BiNAY ENCOOING.....cuiiiiiiriiiieieieie ettt 8
3.3 JSON ENCOUING. ...ttt sttt s et st sb e e e e e nne e 11
o A O 0 L= SRR 11
5 Object ContaiNer FlES.......c.coiieciece et 12
5.1 REQUITEA COUECS.......ccueiuieitiesieciesieesieete st este e ee st e st e steesaesreesseeseesseeaeeneesreenseeneens 13
5.2 OPLioNal COUECS.......eeiuieueerieeieeieseesteete e steesaeseesteeae e s teeeesseesseesesseesseensessensseensens 13
6 ProtOCOl DECIAIION.ccueiieeeeeie et e s ae e e sneeae e e nneeneas 14
6.1 IMESSAJES......cooueeiriitee ettt e 14
6.2 SAMPIE PrOLOCOL........coieieiiiiieiie ettt st st nes 14
7 ProtoCOl Wir€ FOMMEL........cc.eiiuiiiiiiieie ettt sb et sneens 15
7.1 MESSAZE TTANSPONT.....eeiiiiieiiie et eritee ettt et e et e e sbe e s b e s sbe e e sabe e e sane e e nareeenanes 15
7.2 MESSAGE FIaMING......cccueeieieesieeieeeesieestesee e e e e e eesae e e s reeae e e e ssa e teeseesseeseennesneenees 16
AT = 16 S 7= TSRS 16
A= o 1 = SR 18

8 SChEMA RESOIULION. ... oo 19

Apache Avro# 1.7.7 Specification

9 Parsing Canonical FOrm for SChEMES..........cccceiieieiiee e 20
9.1 Transforming into Parsing CanoniCal FOrM...........cccovueveieeienieeseese e seesee e 21
0.2 SChEMA FINGEIPITNES. ..ottt sttt e e 21

10 LOGICA TYPES....ueueeueeueeeetesteste sttt eie e e e e ettt besbe et e e e b e sb e bt eb e seeaeenn e e e s e nneneeenis 23
O I <ol 0= PSR 23

Page 2

Apache Avro# 1.7.7 Specification

1 Introduction

This document defines Apache Avro. It isintended to be the authoritative specification.
Implementations of Avro must adhere to this document.

2 Schema Declaration

A Schemais represented in JSON by one of:

* A JSON string, naming a defined type.
* A JSON object, of the form:

{"type": "typeNane" ...attributes...}

where typeName is either a primitive or derived type name, as defined below. Attributes
not defined in this document are permitted as metadata, but must not affect the format of
serialized data.

» A JSON array, representing a union of embedded types.

2.1 Primitive Types

The set of primitive type namesis:

* null:novaue

* bool ean: abinary value

* i nt:32-bit signed integer

* | ong: 64-bit signed integer

» fl oat: single precision (32-bit) IEEE 754 floating-point number

* doubl e: double precision (64-bit) IEEE 754 floating-point number
* Dbyt es: sequence of 8-bit unsigned bytes

* string: unicode character sequence

Primitive types have no specified attributes.

Primitive type names are al so defined type names. Thus, for example, the schema"string” is
equivalent to:

{"type": "string"}

2.2 Complex Types

Avro supports six kinds of complex types: records, enums, arrays, maps, unions and fixed.

2.2.1 Records

Records use the type name "record" and support three attributes:
* nane: aJSON string providing the name of the record (required).

Page 3

http://www.json.org/

Apache Avro# 1.7.7 Specification

namespace, a JSON string that qualifies the name;

doc: aJSON string providing documentation to the user of this schema (optional).

al i ases: aJSON array of strings, providing alternate names for this record (optional).
fi el ds:aJSON array, listing fields (required). Each field is a JSON object with the

following attributes:

name: aJSON string providing the name of the field (required), and

doc: aJSON string describing this field for users (optional).

t ype: A JSON object defining a schema, or a JSON string naming a record
definition (required).

def aul t: A default value for thisfield, used when reading instances that lack this
field (optional). Permitted values depend on the field's schema type, according to
the table below. Default values for union fields correspond to the first schemain the
union. Default values for bytes and fixed fields are JSON strings, where Unicode
code points 0-255 are mapped to unsigned 8-bit byte values 0-255.

null null null
boolean boolean true
int,long integer 1
float,double number 11
bytes string "\UOOFF"
string string "foo"
record object {"a" 1}
enum string "FOO"
array array [1]

map object {"a": 1}
fixed string "\uOOff"

Table 1: field default values

or der : specifies how thisfield impacts sort ordering of thisrecord (optional). Valid
values are "ascending” (the default), "descending”, or "ignore". For more details on
how thisis used, see the the sort order section below.

al i ases: aJSON array of strings, providing alternate names for thisfield
(optional).

For example, alinked-list of 64-bit values may be defined with:

Page 4

Apache Avro# 1.7.7 Specification

2.2.2 Enums

Enums use the type name "enum" and support the following attributes:

namne: aJSON string providing the name of the enum (required).

namespace, a JSON string that qualifies the name;

al i ases: aJSON array of strings, providing alternate names for this enum (optional).
doc: aJSON string providing documentation to the user of this schema (optional).
synbol s: aJSON array, listing symbols, as JSON strings (required). All symbolsin an
enum must be unique; duplicates are prohibited.

For example, playing card suits might be defined with:

2.2.3 Arrays

Arraysuse thetypename" ar r ay" and support asingle attribute:
* it ens:theschemaof the array'sitems.

For example, an array of stringsis declared with:

2.2.4 Maps
Maps use the type name " map" and support one attribute:
» val ues: the schema of the map's values.

Map keys are assumed to be strings.
For example, amap from string to long is declared with:

Apache Avro# 1.7.7 Specification

{"type": "map", "values": "long"}

2.2.5 Unions
Unions, as mentioned above, are represented using JSSON arrays. For example, [" nul | ",
"string"] declaresaschemawhich may be either anull or string.

(Note that when a default value is specified for arecord field whose type is a union, the type
of the default value must match the first element of the union. Thus, for unions containing
"null”, the "null" isusually listed first, since the default value of such unionsistypically
null.)

Unions may not contain more than one schema with the same type, except for the named
types record, fixed and enum. For example, unions containing two array types or two map
types are not permitted, but two types with different names are permitted. (Names permit
efficient resolution when reading and writing unions.)

Unions may not immediately contain other unions.

2.2.6 Fixed

Fixed usesthe type name " f i xed" and supports two attributes:

* nane: astring naming this fixed (required).

* namespace, a string that qualifies the name;

 aliases: aJSON array of strings, providing aternate names for this enum (optional).
* si ze: aninteger, specifying the number of bytes per value (required).

For example, 16-byte quantity may be declared with:

{"type": "fixed", "size": 16, "nane": "nd5"}

2.3 Names

Record, enums and fixed are named types. Each has a fullname that is composed of two
parts; a name and a namespace. Equality of namesis defined on the fullname.

The name portion of afullname, record field names, and enum symbols must:

o startwith[A-Za- z_]

* subsequently containonly [A- Za- z0- 9_]

A namespace is a dot-separated sequence of such names. The empty string may also be used

as a namespace to indicate the null namespace. Equality of names (including field names and
enum symbols) aswell as fullnamesis case-sensitive.

In record, enum and fixed definitions, the fullname is determined in one of the following
ways:

Page 6

Apache Avro# 1.7.7 Specification

* A name and namespace are both specified. For example, one might use" nanme": " X",
"nanespace": "org.foo" toindicatethefullnameor g. f 0o. X.

» A fullnameis specified. If the name specified contains a dot, then it is assumed to be
afullname, and any namespace also specified isignored. For example, use " nane" :
"org. foo. X" toindicate the fullnameor g. f 0o. X.

* A nameonly is specified, i.e., aname that contains no dots. In this case the namespace
is taken from the most tightly enclosing schema or protocol. For example, if " nanme" :

" X" is specified, and this occurs within afield of the record definition of or g. f 00. Y,
then the fullnameisor g. f 0o. X. If there is no enclosing namespace then the null
namespace is used.

References to previously defined names are as in the latter two cases above: if they contain a
dot they are afullname, if they do not contain a dot, the namespace is the namespace of the
enclosing definition.

Primitive type names have no namespace and their names may not be defined in any
namespace.

A schema or protocol may not contain multiple definitions of afullname. Further, a name
must be defined before it is used ("before" in the depth-first, left-to-right traversal of the
JSON parsetree, wherethet ypes attribute of aprotocol is always deemed to come "before”
thenmessages attribute.)

2.4 Aliases

Named types and fields may have aliases. An implementation may optionally use aliases
to map awriter's schemato the reader's. This faciliates both schema evolution as well as
processing disparate datasets.

Aliases function by re-writing the writer's schema using aliases from the reader's schema. For
example, if the writer's schema was named "Foo" and the reader's schemais named "Bar"

and has an dlias of "Foo", then the implementation would act as though "Foo" were named
"Bar" when reading. Similarly, if datawas written as arecord with afield named "x" and is
read as arecord with afield named "y" with alias "x", then the implementation would act as
though "x" were named "y" when reading.

A type alias may be specified either as a fully namespace-qualified, or relative to the
namespace of the nameit isan aliasfor. For example, if atype named "a.b" has aliases of "c"
and "x.y", then the fully qualified names of itsaliases are "a.c" and "x.y".

3 Data Serialization

Avro datais always serialized with its schema. Files that store Avro data should always also
include the schema for that datain the same file. Avro-based remote procedure call (RPC)

Page 7

Apache Avro# 1.7.7 Specification

systems must also guarantee that remote recipients of data have a copy of the schema used to
write that data.

Because the schema used to write datais always available when the datais read, Avro data
itself is not tagged with type information. The schemais required to parse data.

In general, both serialization and deserialization proceed as a depth-first, left-to-right
traversal of the schema, serializing primitive types as they are encountered.

3.1 Encodings

Avro specifies two serialization encodings. binary and JSON. Most applications will use the
binary encoding, asit is smaller and faster. But, for debugging and web-based applications,
the JSON encoding may sometimes be appropriate.

3.2 Binary Encoding

3.2.1 Primitive Types

Primitive types are encoded in binary as follows:

* nul | iswritten as zero bytes.
* abool ean iswritten asasingle byte whose value is either O (false) or 1 (true).
* int andl ong vaues are written using variable-length zig-zag coding. Some examples:

0 00
-1 01
1 02
-2 03
2 04
-64 7f
64 80 01

» afl oat iswritten as4 bytes. Thefloat is converted into a 32-bit integer using a method
equivalent to Java's floatTolntBits and then encoded in little-endian format.

* adoubl e iswritten as 8 bytes. The double is converted into a 64-bit integer using a
method equivalent to Java's doubleT oL ongBits and then encoded in little-endian format.

* byt es areencoded asal ong followed by that many bytes of data.

Page 8

http://lucene.apache.org/java/3_5_0/fileformats.html#VInt
http://code.google.com/apis/protocolbuffers/docs/encoding.html#types
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#floatToIntBits%28float%29
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#doubleToLongBits%28double%29

Apache Avro# 1.7.7 Specification

 astringisencoded asal ong followed by that many bytes of UTF-8 encoded
character data.

For example, the three-character string "foo" would be encoded as the long value 3
(encoded as hex 06) followed by the UTF-8 encoding of 'f', '0', and 0’ (the hex bytes 66
6f 6f):

3.2.2 Complex Types

Complex types are encoded in binary as follows:

3.2.2.1 Records

A record is encoded by encoding the values of its fieldsin the order that they are declared. In
other words, arecord is encoded as just the concatenation of the encodings of itsfields. Field
values are encoded per their schema.

For example, the record schema

An instance of this record whose a field has value 27 (encoded as hex 36) and whose b field
has value "foo" (encoded as hex bytes06 66 6f 6f), would be encoded ssimply asthe
concatenation of these, namely the hex byte sequence:

3.2.2.2 Enums

An enum isencoded by ai nt , representing the zero-based position of the symbol in the
schema.

For example, consider the enum:

Apache Avro# 1.7.7 Specification

Thiswould be encoded by ani nt between zero and three, with zero indicating "A", and 3
indicating "D".

3.2.2.3 Arrays

Arrays are encoded as a series of blocks. Each block consists of al ong count value,

followed by that many array items. A block with count zero indicates the end of the array.
Each item is encoded per the array's item schema.

If ablock's count is negative, its absolute value is used, and the count is followed
immediately by al ong block size indicating the number of bytes in the block. This block
size permits fast skipping through data, e.g., when projecting arecord to a subset of its fields.

For example, the array schema
{"type": "array", "itenms": "long"}

an array containing the items 3 and 27 could be encoded as the long value 2 (encoded as hex
04) followed by long values 3 and 27 (encoded as hex 06 36) terminated by zero:

04 06 36 00

The blocked representation permits one to read and write arrays larger than can be buffered
in memory, since one can start writing items without knowing the full length of the array.

3.2.2.4 Maps

Maps are encoded as a series of blocks. Each block consists of al ong count value, followed
by that many key/value pairs. A block with count zero indicates the end of the map. Each
item is encoded per the map's value schema.

If ablock's count is negative, its absolute value is used, and the count is followed
immediately by al ong block size indicating the number of bytesin the block. This block
size permits fast skipping through data, e.g., when projecting arecord to a subset of itsfields.

The blocked representation permits one to read and write maps larger than can be buffered in
memory, since one can start writing items without knowing the full length of the map.

3.2.2.5 Unions

A union is encoded by first writing al ong value indicating the zero-based position within
the union of the schema of its value. The value is then encoded per the indicated schema
within the union.

For example, the union schema["nul | ", "stri ng"] would encode:

* nul | aszero (theindex of "null" in the union):
00

Page 10

Apache Avro# 1.7.7 Specification

* thestring"a" asone (theindex of "string" in the union, encoded as hex 02), followed
by the serialized string:

02 02 61

3.2.2.6 Fixed

Fixed instances are encoded using the number of bytes declared in the schema.

3.3 JSON Encoding

Except for unions, the JISON encoding is the same as is used to encode field default values.
The value of aunion is encoded in JSON as follows:

o ifitstypeisnul |, thenitisencoded asaJSON null;

» otherwiseit is encoded as a JSON object with one name/value pair whose name is the
type's name and whose value is the recursively encoded value. For Avro's named types
(record, fixed or enum) the user-specified nameis used, for other typesthe type nameis
used.

For example, the union schema["nul | ", "string", "Foo"], where Foo isarecord
name, would encode:

* null asnull;

 thestring"a" as{"string": "a"};and

* aFooinstanceas{"Foo": {...}},where{. ..} indicatesthe JSON encoding of a
Foo instance.

Note that a schemais still required to correctly process JSON-encoded data. For example, the
JSON encoding does not distinguish betweeni nt and| ong, f | oat and doubl e, records
and maps, enums and strings, etc.

4 Sort Order

Avro defines a standard sort order for data. This permits data written by one system to be
efficiently sorted by another system. This can be an important optimization, as sort order
comparisons are sometimes the most frequent per-object operation. Note also that Avro
binary-encoded data can be efficiently ordered without deserializing it to objects.

Dataitems may only be compared if they have identical schemas. Pairwise comparisons are
implemented recursively with a depth-first, left-to-right traversal of the schema. Thefirst
mismatch encountered determines the order of the items.

Two items with the same schema are compared according to the following rules.

 null dataisawaysequal.
* bool ean datais ordered with false before true.

Page 11

Apache Avro# 1.7.7 Specification

e int,long,float anddoubl e dataisordered by ascending numeric value.

 bytes andfi xed dataare compared lexicographically by unsigned 8-bit values.

e string dataiscompared lexicographically by Unicode code point. Note that since
UTF-8 isused as the binary encoding for strings, sorting of bytes and string binary datais
identical.

e array dataiscompared lexicographically by element.

e enumdataisordered by the symbol's position in the enum schema. For example, an

enum whose symbolsare[" z", "a"] wouldsort"z" valuesbefore™ a" values.
e uni on dataisfirst ordered by the branch within the union, and, within that, by the type
of the branch. For example,an["int", "string"] unionwould order al int values

before all string values, with the ints and strings themsel ves ordered as defined above.

* record dataisordered lexicographically by field. If afield specifiesthat its order is:
e "ascendi ng", then the order of its valuesis unaltered.
» "descendi ng", thenthe order of itsvaluesis reversed.
 "ignore",thenitsvauesareignored when sorting.

e map datamay not be compared. It isan error to attempt to compare data containing maps
unlessthose mapsareinan" or der " : "i gnor e" record field.

5 Object Container Files

Avro includes a simple object container file format. A file has a schema, and all objects
stored in the file must be written according to that schema, using binary encoding. Objects
are stored in blocks that may be compressed. Syncronization markers are used between
blocks to permit efficient splitting of files for MapReduce processing.

Files may include arbitrary user-specified metadata.
A file consists of:

» A file header, followed by
e oneor more file data blocks.

A file header consists of:

* Four bytes, ASCII 'O, 'b', ', followed by 1.
» file metadata, including the schema.
* The 16-byte, randomly-generated sync marker for thisfile.

File metadatais written asif defined by the following map schema:
{"type": "map", "values": "bytes"}

All metadata properties that start with "avro." are reserved. The following file metadata
properties are currently used:

* avro.schema contains the schema of objects stored in the file, as JSON data (required).

Page 12

Apache Avro# 1.7.7 Specification

» avro.codec the name of the compression codec used to compress blocks, as a string.
Implementations are required to support the following codecs: "null" and "deflate". If
codec is absent, it is assumed to be "null”. The codecs are described with more detail
below.

A file header is thus described by the following schema:

{"type": "record", "nane": "org.apache.avro.file.Header",
"fields" : [
{"nane": "nmgic", "type": {"type": "fixed", "nane": "Magic", "size": 4}},
{"nane": "neta", "type": {"type": "nmap", "values": "bytes"}},

{"nane": "sync", "type": {"type": "fixed", "nane": "Sync", "size": 16}},
]
}

A file data block consists of:

* A long indicating the count of objectsin this block.

* Alongindicating the size in bytes of the serialized objects in the current block, after any
codec is applied

» Theserialized objects. If a codec is specified, thisis compressed by that codec.

* Thefile's 16-byte sync marker.

Thus, each block's binary data can be efficiently extracted or skipped without deserializing
the contents. The combination of block size, object counts, and sync markers enable
detection of corrupt blocks and help ensure data integrity.

5.1 Required Codecs

5.1.1 null

The "null" codec simply passes through data uncompressed.

5.1.2 deflate

The "deflate” codec writes the data block using the deflate algorithm as specified in RFC
1951, and typically implemented using the zlib library. Note that this format (unlike the "zlib
format" in RFC 1950) does not have a checksum.

5.2 Optional Codecs

5.2.1 snappy

The "snappy" codec uses Google's Snappy compression library. Each compressed block is
followed by the 4-byte, big-endian CRC32 checksum of the uncompressed data in the block.

Page 13

http://www.isi.edu/in-notes/rfc1951.txt
http://www.isi.edu/in-notes/rfc1951.txt
http://code.google.com/p/snappy/

Apache Avro# 1.7.7 Specification

6 Protocol Declaration

Avro protocols describe RPC interfaces. Like schemas, they are defined with JSON text.
A protocol isaJSON object with the following attributes:

» protocol, astring, the name of the protocol (required);

* namespace, an optional string that qualifies the name;

* doc, an optional string describing this protocol;

* types, an optional list of definitions of named types (records, enums, fixed and errors). An
error definition isjust like arecord definition except it uses "error” instead of "record".
Note that forward references to named types are not permitted.

* messages, an optional JSON object whose keys are message names and whose values are
objects whose attributes are described below. No two messages may have the same name.

The name and namespace qualification rules defined for schema objects apply to protocols as
well.

6.1 Messages

A message has attributes:

* adoc, an optional description of the message,

* arequest, alist of named, typed parameter schemas (this has the same form as the fields
of arecord declaration);

* aresponse schema;

» anoptiona union of declared error schemas. The effective union has"” st ri ng"
prepended to the declared union, to permit transmission of undeclared "system” errors.
For example, if the declared error unionis[" AccessErr or "], then the effective
unionis["string", "AccessError"].Whenno errorsare declared, the effective
error unionis[" stri ng"] . Errors are seridlized using the effective union; however, a
protocol's JSON declaration contains only the declared union.

* anoptional one-way boolean parameter.

A request parameter list is processed equivalently to an anonymous record. Since record field
lists may vary between reader and writer, request parameters may also differ between the
caller and responder, and such differences are resolved in the same manner as record field
differences.

The one-way parameter may only be true when the response typeis” nul | " and no errors
arelisted.

6.2 Sample Protocol

For example, one may define asimple Helloworld protocol with:

Page 14

Apache Avro# 1.7.7 Specification

7 Protocol Wire Format

7.1 Message Transport

Messages may be transmitted via different transport mechanisms.
To the transport, a message is an opague byte sequence.

A transport is a system that supports:

» transmission of request messages

* receipt of corresponding response messages

Servers may send a response message back to the client corresponding to a request
message. The mechanism of correspondance is transport-specific. For example, inHTTP
itisimplicit, since HTTP directly supports requests and responses. But a transport that
multiplexes many client threads over a single socket would need to tag messages with
unique identifiers.

Transports may be either stateless or stateful. In a statel ess transport, messaging assumes no
established connection state, while stateful transports establish connections that may be used
for multiple messages. This distinction is discussed further in the handshake section below.

7.1.1 HTTP as Transport

When HTTP is used as atransport, each Avro message exchange isan HTTP request/
response pair. All messages of an Avro protocol should shareasingle URL at an HTTP

Page 15

http://www.w3.org/Protocols/rfc2616/rfc2616.html

Apache Avro# 1.7.7 Specification

server. Other protocols may also use that URL. Both normal and error Avro response
messages should use the 200 (OK) response code. The chunked encoding may be used for
requests and responses, but, regardless the Avro request and response are the entire content
of an HTTP request and response. The HTTP Content-Type of requests and responses should
be specified as "avro/binary”. Requests should be made using the POST method.

HTTPisused by Avro as a statel ess transport.

7.2 Message Framing

Avro messages are framed as alist of buffers.

Framing is alayer between messages and the transport. It exists to optimize certain
operations.

The format of framed message dataiis:

» aseries of buffers, where each buffer consists of
» afour-byte, big-endian buffer length, followed by
» that many bytes of buffer data.
* A messageis awaysterminated by a zero-lenghted buffer.

Framing is transparent to request and response message formats (described below). Any
message may be presented as a single or multiple buffers.

Framing can permit readers to more efficiently get different buffers from different sources
and for writersto more efficiently store different buffersto different destinations. In
particular, it can reduce the number of times large binary objects are copied. For example,
if an RPC parameter consists of a megabyte of file data, that data can be copied directly to
a socket from afile descriptor, and, on the other end, it could be written directly to afile
descriptor, never entering user space.

A simple, recommended, framing policy isfor writers to create a new segment whenever a
single binary object iswritten that is larger than a normal output buffer. Small objects are
then appended in buffers, while larger objects are written as their own buffers. When a reader
then tries to read a large object the runtime can hand it an entire buffer directly, without
having to copy it.

7.3 Handshake

The purpose of the handshake is to ensure that the client and the server have each other's
protocol definition, so that the client can correctly deserialize responses, and the server can
correctly deserialize requests. Both clients and servers should maintain a cache of recently
seen protocols, so that, in most cases, a handshake will be completed without extra round-trip
network exchanges or the transmission of full protocol text.

Page 16

Apache Avro# 1.7.7 Specification

RPC requests and responses may nhot be processed until a handshake has been completed.
With a statel ess transport, all requests and responses are prefixed by handshakes. With a
stateful transport, handshakes are only attached to requests and responses until a successful
handshake response has been returned over a connection. After this, request and response
payloads are sent without handshakes for the lifetime of that connection.

The handshake process uses the following record schemas:

» A client first prefixes each request with aHandshakeRequest containing just
the hash of its protocol and of the server's protocol (cl i ent Hash! =nul | ,
clientProtocol =null, serverHash! =nul|), wherethe hashes are 128-
bit MD5 hashes of the JSON protocol text. If aclient has never connected to a given
server, it sends its hash as a guess of the server's hash, otherwise it sends the hash that it
previously obtained from this server.

» The server responds with aHandshakeResponse containing one of:

« mat ch=BOTH, serverProtocol =null, serverHash=null if theclient
sent the valid hash of the server's protocol and the server knows what protocol
corresponds to the client's hash. In this case, the request is complete and the response
dataimmediately follows the HandshakeResponse.

« mat ch=CLI ENT, serverProtocol!=null, serverHash!=null ifthe
server has previously seen the client's protocol, but the client sent an incorrect hash

Page 17

Apache Avro# 1.7.7 Specification

of the server's protocol. The request is complete and the response data immediately
follows the HandshakeResponse. The client must use the returned protocol to process
the response and should also cache that protocol and its hash for future interactions
with this server.

* mat ch=NONE if the server has not previously seen the client's protocol. The
server Hash andser ver Pr ot ocol may aso be non-null if the server's protocol
hash was incorrect.

In this case the client must then re-submit its request with its protocol text

(clientHash!=null, clientProtocol!=null, serverHash!
=nul |) and the server should respond with a successful match (mat ch=BOTH,
server Prot ocol =nul |, serverHash=nul |) asabove.

The net a field is reserved for future handshake enhancements.

7.4 Call Format

A call consists of arequest message paired with its resulting response or error message.
Requests and responses contain extensible metadata, and both kinds of messages are framed
as described above.

The format of acall request is:

* reguest metadata, a map with values of type byt es

» the message name, an Avro string, followed by

» the message parameters. Parameters are serialized according to the message's request
declaration.

When the empty string is used as a message name a server should ignore the parameters and
return an empty response. A client may use thisto ping a server or to perform a handshake
without sending a protocol message.

When a message is declared one-way and a stateful connection has been established by a
successful handshake response, no response data is sent. Otherwise the format of the call
responseis:

* response metadata, a map with values of type byt es
* aone-byteerror flag boolean, followed by either:
» if theerror flag isfalse, the message response, serialized per the message's response
schema.
» if theerror flagistrue, the error, serialized per the message's effective error union
schema.

Page 18

Apache Avro# 1.7.7 Specification

8 Schema Resolution

A reader of Avro data, whether from an RPC or afile, can always parse that data because

its schemais provided. But that schema may not be exactly the schemathat was expected.
For example, if the data was written with a different version of the software than it isread,
then records may have had fields added or removed. This section specifies how such schema
differences should be resolved.

We call the schema used to write the data as the writer's schema, and the schema that the
application expects the reader's schema. Differences between these should be resolved as
follows:

e ltisanerror if the two schemas do not match.
To match, one of the following must hold:

both schemas are arrays whose item types match
both schemas are maps whose value types match
both schemas are enums whose names match

both schemas are fixed whose sizes and names match
both schemas are records with the same name

either schemaisaunion

both schemas have same primitive type

the writer's schema may be promoted to the reader's as follows:
* intispromotable to long, float, or double

long is promotable to float or double

float is promotable to double

string is promotabl e to bytes

* bytesis promotable to string

e if both arerecords;

the ordering of fields may be different: fields are matched by name.

schemas for fields with the same name in both records are resolved recursively.

if the writer's record contains afield with a name not present in the reader's record,
the writer's value for that field isignored.

if the reader's record schema has afield that contains a default value, and writer's
schema does not have a field with the same name, then the reader should use the
default value from itsfield.

if the reader's record schema has afield with no default value, and writer's schema
does not have afield with the same name, an error is signalled.

e if both areenums;

if the writer's symbol is not present in the reader's enum, then an error is signalled.
* if both arearrays:

Page 19

Apache Avro# 1.7.7 Specification

This resolution algorithm is applied recursively to the reader's and writer's array item
schemas.
* if both are maps:

This resolution algorithm is applied recursively to the reader's and writer's value schemas.
* if both areunions:

The first schema.in the reader's union that matches the selected writer's union schemais
recursively resolved against it. if none match, an error is signalled.
e freader'sisaunion, but writer'sisnot

The first schemain the reader's union that matches the writer's schemais recursively
resolved against it. If none match, an error is signalled.
» if writer'sisaunion, but reader'sisnot

If the reader's schema matches the selected writer's schema, it is recursively resolved
against it. If they do not match, an error is signalled.

A schema's "doc" fields are ignored for the purposes of schema resolution. Hence, the "doc"
portion of a schema may be dropped at serialization.

9 Parsing Canonical Form for Schemas

One of the defining characteristics of Avro isthat areader is assumed to have the "same"
schema used by the writer of the data the reader is reading. This assumption leads to a data
format that's compact and also amenable to many forms of schema evolution. However,

the specification so far has not defined what it means for the reader to have the "same"
schema as the writer. Does the schema need to be textually identical? Well, clearly adding or
removing some whitespace to a JSON expression does not change its meaning. At the same
time, reordering the fields of records clearly does change the meaning. So what does it mean
for areader to have "the same" schemaas awriter?

Parsing Canonical Formisatransformation of awriter's schemathat let's us define what it
means for two schemas to be "the same" for the purpose of reading data written agains the
schema. It is called Parsing Canonical Form because the transformations strip away parts
of the schema, like "doc" attributes, that are irrelevant to readers trying to parse incoming
data. It is called Canonical Form because the transformations normalize the JSON text
(such asthe order of attributes) in away that eliminates unimportant differences between
schemas. If the Parsing Canonical Forms of two different schemas are textually equal, then
those schemas are "the same" as far as any reader is concerned, i.e., there is no serialized data
that would allow areader to distinguish data generated by awriter using one of the original
schemas from data generated by a writing using the other original schema. (We sketch a
proof of this property in a companion document.)

Page 20

Apache Avro# 1.7.7 Specification

The next subsection specifies the transformations that define Parsing Canonical Form. But
with awell-defined canonical form, it can be convenient to go one step further, transforming
these canonical formsinto simpleintegers ("fingerprints*) that can be used to uniquely
identify schemas. The subsection after next recommends some standard practices for
generating such fingerprints.

9.1 Transforming into Parsing Canonical Form

Assuming an input schema (in JISON form) that's already UTF-8 text for avalid Avro schema
(including all quotes as required by JSON), the following transformations will produce its
Parsing Canonical Form:

* [PRIMITIVES] Convert primitive schemasto their smple form (e.g., i nt instead of
{"type":"int"}).

* [FULLNAMES] Replace short names with fullnames, using applicable namespaces to do
so. Then eliminate nanespace attributes, which are now redundant.

* [STRIP] Keep only attributes that are relevant to parsing data, which are: t ype,
name, fi el ds,synbol s,itens,val ues, si ze. Strip al others (e.g., doc and
al i ases).

* [ORDER] Order the appearance of fields of JSON objects as follows. nane, t ype,
fields,synbol s,itens,val ues,si ze. For example, if an object hast ype,
namne, and si ze fields, then the nane field should appear first, followed by thet ype
and then the si ze fields.

* [STRINGS] For al JSON string literals in the schematext, replace any escaped
characters (e.g., \uXXXX escapes) with their UTF-8 equivalents.

* [INTEGERS] Eliminate quotes around and any leading zeros in front of JSON integer
literals (which appear inthe si ze attributes of f i xed schemas).

* [WHITESPACE] Eliminate all whitespace in JSON outside of string literals.

9.2 Schema Fingerprints

"[A] fingerprinting algorithm is a procedure that maps an arbitrarily large dataitem (such

as a computer file) to amuch shorter bit string, its fingerprint, that uniquely identifies the
original datafor all practical purposes' (quoted from [Wikipedia]). In the Avro context,
fingerprints of Parsing Canonical Form can be useful in a number of applications; for
example, to cache encoder and decoder objects, to tag dataitems with a short substitute for
the writer's full schema, and to quickly negotiate common-case schemas between readers and
writers.

In designing fingerprinting algorithms, there is a fundamental trade-off between the length
of the fingerprint and the probability of collisions. To help application designers find
appropriate points within this trade-off space, while encouraging interoperability and ease

Page 21

http://en.wikipedia.org/wiki/Fingerprint_(computing)

Apache Avro# 1.7.7 Specification

of implementation, we recommend using one of the following three algorithms when
fingerprinting Avro schemas:

* When applications can tolerate longer fingerprints, we recommend using the SHA-256
digest algorithm to generate 256-bit fingerprints of Parsing Canonical Forms. Most
languages today have SHA-256 implementationsin their libraries.

» At the opposite extreme, the smallest fingerprint we recommend is a 64-bit Rabin
fingerprint. Below, we provide pseudo-code for this algorithm that can be easily
tranglated into any programming language. 64-bit fingerprints should guarantee
uniqueness for schema caches of up to amillion entries (for such a cache, the chance
of acollision is 3E-8). We don't recommend shorter fingerprints, as the chances of
collisionsistoo great (for example, with 32-bit fingerprints, a cache with as few as
100,000 schemas has a 50% chance of having a collision).

» Between these two extremes, we recommend using the MD5 message digest to generate
128-bit fingerprints. These make sense only where very large numbers of schemas are
being manipulated (tens of millions); otherwise, 64-bit fingerprints should be sufficient.
Aswith SHA-256, MD5 implementations are found in most libraries today.

These fingerprints are not meant to provide any security guarantees, even the longer
SHA-256-based ones. Most Avro applications should be surrounded by security measures
that prevent attackers from writing random data and otherwise interfering with the consumers
of schemas. We recommend that these surrounding mechanisms be used to prevent collision
and pre-image attacks (i.e., "forgery") on schemafingerprints, rather than relying on the
security properties of the fingerprints themselves.

Rabin fingerprints are cyclic redundancy checks computed using irreducible polynomials. In
the style of the Appendix of RFC 1952 (pg 10), which defines the CRC-32 algorithm, here's
our definition of the 64-bit AVRO fingerprinting algorithm:

long fingerprint64(byte[] buf) {
if (FP_TABLE == null) initFPTable();
long fp = EMPTY;

for (int i =0; i < buf.length; i++)
fp = (fp >>> 8) ~ FP_TABLE[(int)(fp ™ buf[i]) & Oxff];
return fp;

}

static | ong EMPTY = Oxcl5d213aa4d7a795L;
static long[] FP_TABLE = null;

voi d initFPTable() {
FP_TABLE = new | ong[256] ;

for (int i =0; i < 256; i++) {
long fp =i;
for (int j =0; j <8;]J++)
fp=(fp >> 1) » (EMPTY & -(fp & 1L));
FP_TABLE[i] = fp;

}

Page 22

http://en.wikipedia.org/wiki/SHA-2
http://en.wikipedia.org/wiki/SHA-2
http://en.wikipedia.org/wiki/Rabin_fingerprint
http://en.wikipedia.org/wiki/Rabin_fingerprint
http://en.wikipedia.org/wiki/MD5
http://en.wikipedia.org/wiki/Cyclic_redundancy_check
http://www.ietf.org/rfc/rfc1952.txt

Apache Avro# 1.7.7 Specification

Readers interested in the mathematics behind this agorithm may want to read this book
chapter. (Unlike RFC-1952 and the book chapter, we prepend a single one bit to messages.
We do this because CRCsignore leading zero bits, which can be problematic. Our code
prepends a one-bit by initializing fingerprints using EMPTY, rather than initializing using
zero asin RFC-1952 and the book chapter.)

10 Logical Types

A logical typeisan Avro primitive or complex type with extra attributes to represent a
derived type. The attribute | ogi cal Type must always be present for alogical type, and is
a string with the name of one of the logical typeslisted later in this section. Other attributes
may be defined for particular logical types.

A logical typeis always serialized using its underlying Avro type so that values are encoded
in exactly the same way as the equivalent Avro type that does not haveal ogi cal Type
attribute. Language implementations may choose to represent logical types with an
appropriate native type, although thisis not required.

L anguage implementations must ignore unknown logical types when reading, and should
use the underlying Avro type. If alogical typeisinvalid, for example a decimal with scale
greater than its precision, then implementations should ignore the logical type and use the
underlying Avro type.

10.1 Decimal

Thedeci mal logical type represents an arbitrary-precision signed decimal number of the

form unscaled x 10—scal €

A deci mal logical type annotates Avro byt es or f i xed types. The byte array must
contain the two's-complement representation of the unscaled integer value in big-endian byte
order. The scaleisfixed, and is specified using an attribute.

The following attributes are supported:

* scal e, aJSON integer representing the scale (optional). If not specified the scaleisO.
* precision,aJSON integer representing the (maximum) precision of decimals stored
in this type (required).

For example, the following schema represents decimal numbers with a maximum precision
of 4 and ascale of 2

{
"type": "bytes",

Page 23

http://www.scribd.com/fb-6001967/d/84795-Crc
http://www.scribd.com/fb-6001967/d/84795-Crc

Apache Avro# 1.7.7 Specification

"l ogi cal Type": "decimal",
"precision": 4,
"scale": 2

}
Precision must be a positive integer greater than zero. If the underlying typeisaf i xed, then
the precision islimited by its size. An array of length n can store at most roor(Iog_10(28 *n
~ 1. 1)) base-10 digits of precision.
Scale must be zero or a positive integer less than or equal to the precision.
For the purposes of schema resolution, two schemas that are deci mal logical types match if
their scales and precisions match.
Apache Avro, Avro, Apache, and the Avro and Apache logos are trademarks of The Apache
Software Foundation.

Page 24

	Table of contents
	1 Introduction
	2 Schema Declaration
	2.1 Primitive Types
	2.2 Complex Types
	2.2.1 Records
	2.2.2 Enums
	2.2.3 Arrays
	2.2.4 Maps
	2.2.5 Unions
	2.2.6 Fixed

	2.3 Names
	2.4 Aliases

	3 Data Serialization
	3.1 Encodings
	3.2 Binary Encoding
	3.2.1 Primitive Types
	3.2.2 Complex Types
	3.2.2.1 Records
	3.2.2.2 Enums
	3.2.2.3 Arrays
	3.2.2.4 Maps
	3.2.2.5 Unions
	3.2.2.6 Fixed

	3.3 JSON Encoding

	4 Sort Order
	5 Object Container Files
	5.1 Required Codecs
	5.1.1 null
	5.1.2 deflate

	5.2 Optional Codecs
	5.2.1 snappy

	6 Protocol Declaration
	6.1 Messages
	6.2 Sample Protocol

	7 Protocol Wire Format
	7.1 Message Transport
	7.1.1 HTTP as Transport

	7.2 Message Framing
	7.3 Handshake
	7.4 Call Format

	8 Schema Resolution
	9 Parsing Canonical Form for Schemas
	9.1 Transforming into Parsing Canonical Form
	9.2 Schema Fingerprints

	10 Logical Types
	10.1 Decimal

