rand/seq/slice.rs
1// Copyright 2018-2023 Developers of the Rand project.
2//
3// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
4// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
5// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
6// option. This file may not be copied, modified, or distributed
7// except according to those terms.
8
9//! `IndexedRandom`, `IndexedMutRandom`, `SliceRandom`
10
11use super::increasing_uniform::IncreasingUniform;
12use super::index;
13#[cfg(feature = "alloc")]
14use crate::distr::uniform::{SampleBorrow, SampleUniform};
15#[cfg(feature = "alloc")]
16use crate::distr::weighted::{Error as WeightError, Weight};
17use crate::Rng;
18use core::ops::{Index, IndexMut};
19
20/// Extension trait on indexable lists, providing random sampling methods.
21///
22/// This trait is implemented on `[T]` slice types. Other types supporting
23/// [`std::ops::Index<usize>`] may implement this (only [`Self::len`] must be
24/// specified).
25pub trait IndexedRandom: Index<usize> {
26 /// The length
27 fn len(&self) -> usize;
28
29 /// True when the length is zero
30 #[inline]
31 fn is_empty(&self) -> bool {
32 self.len() == 0
33 }
34
35 /// Uniformly sample one element
36 ///
37 /// Returns a reference to one uniformly-sampled random element of
38 /// the slice, or `None` if the slice is empty.
39 ///
40 /// For slices, complexity is `O(1)`.
41 ///
42 /// # Example
43 ///
44 /// ```
45 /// use rand::seq::IndexedRandom;
46 ///
47 /// let choices = [1, 2, 4, 8, 16, 32];
48 /// let mut rng = rand::rng();
49 /// println!("{:?}", choices.choose(&mut rng));
50 /// assert_eq!(choices[..0].choose(&mut rng), None);
51 /// ```
52 fn choose<R>(&self, rng: &mut R) -> Option<&Self::Output>
53 where
54 R: Rng + ?Sized,
55 {
56 if self.is_empty() {
57 None
58 } else {
59 Some(&self[rng.random_range(..self.len())])
60 }
61 }
62
63 /// Uniformly sample `amount` distinct elements from self
64 ///
65 /// Chooses `amount` elements from the slice at random, without repetition,
66 /// and in random order. The returned iterator is appropriate both for
67 /// collection into a `Vec` and filling an existing buffer (see example).
68 ///
69 /// In case this API is not sufficiently flexible, use [`index::sample`].
70 ///
71 /// For slices, complexity is the same as [`index::sample`].
72 ///
73 /// # Example
74 /// ```
75 /// use rand::seq::IndexedRandom;
76 ///
77 /// let mut rng = &mut rand::rng();
78 /// let sample = "Hello, audience!".as_bytes();
79 ///
80 /// // collect the results into a vector:
81 /// let v: Vec<u8> = sample.choose_multiple(&mut rng, 3).cloned().collect();
82 ///
83 /// // store in a buffer:
84 /// let mut buf = [0u8; 5];
85 /// for (b, slot) in sample.choose_multiple(&mut rng, buf.len()).zip(buf.iter_mut()) {
86 /// *slot = *b;
87 /// }
88 /// ```
89 #[cfg(feature = "alloc")]
90 fn choose_multiple<R>(&self, rng: &mut R, amount: usize) -> SliceChooseIter<Self, Self::Output>
91 where
92 Self::Output: Sized,
93 R: Rng + ?Sized,
94 {
95 let amount = core::cmp::min(amount, self.len());
96 SliceChooseIter {
97 slice: self,
98 _phantom: Default::default(),
99 indices: index::sample(rng, self.len(), amount).into_iter(),
100 }
101 }
102
103 /// Uniformly sample a fixed-size array of distinct elements from self
104 ///
105 /// Chooses `N` elements from the slice at random, without repetition,
106 /// and in random order.
107 ///
108 /// For slices, complexity is the same as [`index::sample_array`].
109 ///
110 /// # Example
111 /// ```
112 /// use rand::seq::IndexedRandom;
113 ///
114 /// let mut rng = &mut rand::rng();
115 /// let sample = "Hello, audience!".as_bytes();
116 ///
117 /// let a: [u8; 3] = sample.choose_multiple_array(&mut rng).unwrap();
118 /// ```
119 fn choose_multiple_array<R, const N: usize>(&self, rng: &mut R) -> Option<[Self::Output; N]>
120 where
121 Self::Output: Clone + Sized,
122 R: Rng + ?Sized,
123 {
124 let indices = index::sample_array(rng, self.len())?;
125 Some(indices.map(|index| self[index].clone()))
126 }
127
128 /// Biased sampling for one element
129 ///
130 /// Returns a reference to one element of the slice, sampled according
131 /// to the provided weights. Returns `None` only if the slice is empty.
132 ///
133 /// The specified function `weight` maps each item `x` to a relative
134 /// likelihood `weight(x)`. The probability of each item being selected is
135 /// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`.
136 ///
137 /// For slices of length `n`, complexity is `O(n)`.
138 /// For more information about the underlying algorithm,
139 /// see the [`WeightedIndex`] distribution.
140 ///
141 /// See also [`choose_weighted_mut`].
142 ///
143 /// # Example
144 ///
145 /// ```
146 /// use rand::prelude::*;
147 ///
148 /// let choices = [('a', 2), ('b', 1), ('c', 1), ('d', 0)];
149 /// let mut rng = rand::rng();
150 /// // 50% chance to print 'a', 25% chance to print 'b', 25% chance to print 'c',
151 /// // and 'd' will never be printed
152 /// println!("{:?}", choices.choose_weighted(&mut rng, |item| item.1).unwrap().0);
153 /// ```
154 /// [`choose`]: IndexedRandom::choose
155 /// [`choose_weighted_mut`]: IndexedMutRandom::choose_weighted_mut
156 /// [`WeightedIndex`]: crate::distr::weighted::WeightedIndex
157 #[cfg(feature = "alloc")]
158 fn choose_weighted<R, F, B, X>(
159 &self,
160 rng: &mut R,
161 weight: F,
162 ) -> Result<&Self::Output, WeightError>
163 where
164 R: Rng + ?Sized,
165 F: Fn(&Self::Output) -> B,
166 B: SampleBorrow<X>,
167 X: SampleUniform + Weight + PartialOrd<X>,
168 {
169 use crate::distr::{weighted::WeightedIndex, Distribution};
170 let distr = WeightedIndex::new((0..self.len()).map(|idx| weight(&self[idx])))?;
171 Ok(&self[distr.sample(rng)])
172 }
173
174 /// Biased sampling of `amount` distinct elements
175 ///
176 /// Similar to [`choose_multiple`], but where the likelihood of each
177 /// element's inclusion in the output may be specified. Zero-weighted
178 /// elements are never returned; the result may therefore contain fewer
179 /// elements than `amount` even when `self.len() >= amount`. The elements
180 /// are returned in an arbitrary, unspecified order.
181 ///
182 /// The specified function `weight` maps each item `x` to a relative
183 /// likelihood `weight(x)`. The probability of each item being selected is
184 /// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`.
185 ///
186 /// This implementation uses `O(length + amount)` space and `O(length)` time.
187 /// See [`index::sample_weighted`] for details.
188 ///
189 /// # Example
190 ///
191 /// ```
192 /// use rand::prelude::*;
193 ///
194 /// let choices = [('a', 2), ('b', 1), ('c', 1)];
195 /// let mut rng = rand::rng();
196 /// // First Draw * Second Draw = total odds
197 /// // -----------------------
198 /// // (50% * 50%) + (25% * 67%) = 41.7% chance that the output is `['a', 'b']` in some order.
199 /// // (50% * 50%) + (25% * 67%) = 41.7% chance that the output is `['a', 'c']` in some order.
200 /// // (25% * 33%) + (25% * 33%) = 16.6% chance that the output is `['b', 'c']` in some order.
201 /// println!("{:?}", choices.choose_multiple_weighted(&mut rng, 2, |item| item.1).unwrap().collect::<Vec<_>>());
202 /// ```
203 /// [`choose_multiple`]: IndexedRandom::choose_multiple
204 // Note: this is feature-gated on std due to usage of f64::powf.
205 // If necessary, we may use alloc+libm as an alternative (see PR #1089).
206 #[cfg(feature = "std")]
207 fn choose_multiple_weighted<R, F, X>(
208 &self,
209 rng: &mut R,
210 amount: usize,
211 weight: F,
212 ) -> Result<SliceChooseIter<Self, Self::Output>, WeightError>
213 where
214 Self::Output: Sized,
215 R: Rng + ?Sized,
216 F: Fn(&Self::Output) -> X,
217 X: Into<f64>,
218 {
219 let amount = core::cmp::min(amount, self.len());
220 Ok(SliceChooseIter {
221 slice: self,
222 _phantom: Default::default(),
223 indices: index::sample_weighted(
224 rng,
225 self.len(),
226 |idx| weight(&self[idx]).into(),
227 amount,
228 )?
229 .into_iter(),
230 })
231 }
232}
233
234/// Extension trait on indexable lists, providing random sampling methods.
235///
236/// This trait is implemented automatically for every type implementing
237/// [`IndexedRandom`] and [`std::ops::IndexMut<usize>`].
238pub trait IndexedMutRandom: IndexedRandom + IndexMut<usize> {
239 /// Uniformly sample one element (mut)
240 ///
241 /// Returns a mutable reference to one uniformly-sampled random element of
242 /// the slice, or `None` if the slice is empty.
243 ///
244 /// For slices, complexity is `O(1)`.
245 fn choose_mut<R>(&mut self, rng: &mut R) -> Option<&mut Self::Output>
246 where
247 R: Rng + ?Sized,
248 {
249 if self.is_empty() {
250 None
251 } else {
252 let len = self.len();
253 Some(&mut self[rng.random_range(..len)])
254 }
255 }
256
257 /// Biased sampling for one element (mut)
258 ///
259 /// Returns a mutable reference to one element of the slice, sampled according
260 /// to the provided weights. Returns `None` only if the slice is empty.
261 ///
262 /// The specified function `weight` maps each item `x` to a relative
263 /// likelihood `weight(x)`. The probability of each item being selected is
264 /// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`.
265 ///
266 /// For slices of length `n`, complexity is `O(n)`.
267 /// For more information about the underlying algorithm,
268 /// see the [`WeightedIndex`] distribution.
269 ///
270 /// See also [`choose_weighted`].
271 ///
272 /// [`choose_mut`]: IndexedMutRandom::choose_mut
273 /// [`choose_weighted`]: IndexedRandom::choose_weighted
274 /// [`WeightedIndex`]: crate::distr::weighted::WeightedIndex
275 #[cfg(feature = "alloc")]
276 fn choose_weighted_mut<R, F, B, X>(
277 &mut self,
278 rng: &mut R,
279 weight: F,
280 ) -> Result<&mut Self::Output, WeightError>
281 where
282 R: Rng + ?Sized,
283 F: Fn(&Self::Output) -> B,
284 B: SampleBorrow<X>,
285 X: SampleUniform + Weight + PartialOrd<X>,
286 {
287 use crate::distr::{weighted::WeightedIndex, Distribution};
288 let distr = WeightedIndex::new((0..self.len()).map(|idx| weight(&self[idx])))?;
289 let index = distr.sample(rng);
290 Ok(&mut self[index])
291 }
292}
293
294/// Extension trait on slices, providing shuffling methods.
295///
296/// This trait is implemented on all `[T]` slice types, providing several
297/// methods for choosing and shuffling elements. You must `use` this trait:
298///
299/// ```
300/// use rand::seq::SliceRandom;
301///
302/// let mut rng = rand::rng();
303/// let mut bytes = "Hello, random!".to_string().into_bytes();
304/// bytes.shuffle(&mut rng);
305/// let str = String::from_utf8(bytes).unwrap();
306/// println!("{}", str);
307/// ```
308/// Example output (non-deterministic):
309/// ```none
310/// l,nmroHado !le
311/// ```
312pub trait SliceRandom: IndexedMutRandom {
313 /// Shuffle a mutable slice in place.
314 ///
315 /// For slices of length `n`, complexity is `O(n)`.
316 /// The resulting permutation is picked uniformly from the set of all possible permutations.
317 ///
318 /// # Example
319 ///
320 /// ```
321 /// use rand::seq::SliceRandom;
322 ///
323 /// let mut rng = rand::rng();
324 /// let mut y = [1, 2, 3, 4, 5];
325 /// println!("Unshuffled: {:?}", y);
326 /// y.shuffle(&mut rng);
327 /// println!("Shuffled: {:?}", y);
328 /// ```
329 fn shuffle<R>(&mut self, rng: &mut R)
330 where
331 R: Rng + ?Sized;
332
333 /// Shuffle a slice in place, but exit early.
334 ///
335 /// Returns two mutable slices from the source slice. The first contains
336 /// `amount` elements randomly permuted. The second has the remaining
337 /// elements that are not fully shuffled.
338 ///
339 /// This is an efficient method to select `amount` elements at random from
340 /// the slice, provided the slice may be mutated.
341 ///
342 /// If you only need to choose elements randomly and `amount > self.len()/2`
343 /// then you may improve performance by taking
344 /// `amount = self.len() - amount` and using only the second slice.
345 ///
346 /// If `amount` is greater than the number of elements in the slice, this
347 /// will perform a full shuffle.
348 ///
349 /// For slices, complexity is `O(m)` where `m = amount`.
350 fn partial_shuffle<R>(
351 &mut self,
352 rng: &mut R,
353 amount: usize,
354 ) -> (&mut [Self::Output], &mut [Self::Output])
355 where
356 Self::Output: Sized,
357 R: Rng + ?Sized;
358}
359
360impl<T> IndexedRandom for [T] {
361 fn len(&self) -> usize {
362 self.len()
363 }
364}
365
366impl<IR: IndexedRandom + IndexMut<usize> + ?Sized> IndexedMutRandom for IR {}
367
368impl<T> SliceRandom for [T] {
369 fn shuffle<R>(&mut self, rng: &mut R)
370 where
371 R: Rng + ?Sized,
372 {
373 if self.len() <= 1 {
374 // There is no need to shuffle an empty or single element slice
375 return;
376 }
377 self.partial_shuffle(rng, self.len());
378 }
379
380 fn partial_shuffle<R>(&mut self, rng: &mut R, amount: usize) -> (&mut [T], &mut [T])
381 where
382 R: Rng + ?Sized,
383 {
384 let m = self.len().saturating_sub(amount);
385
386 // The algorithm below is based on Durstenfeld's algorithm for the
387 // [Fisher–Yates shuffle](https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle#The_modern_algorithm)
388 // for an unbiased permutation.
389 // It ensures that the last `amount` elements of the slice
390 // are randomly selected from the whole slice.
391
392 // `IncreasingUniform::next_index()` is faster than `Rng::random_range`
393 // but only works for 32 bit integers
394 // So we must use the slow method if the slice is longer than that.
395 if self.len() < (u32::MAX as usize) {
396 let mut chooser = IncreasingUniform::new(rng, m as u32);
397 for i in m..self.len() {
398 let index = chooser.next_index();
399 self.swap(i, index);
400 }
401 } else {
402 for i in m..self.len() {
403 let index = rng.random_range(..i + 1);
404 self.swap(i, index);
405 }
406 }
407 let r = self.split_at_mut(m);
408 (r.1, r.0)
409 }
410}
411
412/// An iterator over multiple slice elements.
413///
414/// This struct is created by
415/// [`IndexedRandom::choose_multiple`](trait.IndexedRandom.html#tymethod.choose_multiple).
416#[cfg(feature = "alloc")]
417#[derive(Debug)]
418pub struct SliceChooseIter<'a, S: ?Sized + 'a, T: 'a> {
419 slice: &'a S,
420 _phantom: core::marker::PhantomData<T>,
421 indices: index::IndexVecIntoIter,
422}
423
424#[cfg(feature = "alloc")]
425impl<'a, S: Index<usize, Output = T> + ?Sized + 'a, T: 'a> Iterator for SliceChooseIter<'a, S, T> {
426 type Item = &'a T;
427
428 fn next(&mut self) -> Option<Self::Item> {
429 // TODO: investigate using SliceIndex::get_unchecked when stable
430 self.indices.next().map(|i| &self.slice[i])
431 }
432
433 fn size_hint(&self) -> (usize, Option<usize>) {
434 (self.indices.len(), Some(self.indices.len()))
435 }
436}
437
438#[cfg(feature = "alloc")]
439impl<'a, S: Index<usize, Output = T> + ?Sized + 'a, T: 'a> ExactSizeIterator
440 for SliceChooseIter<'a, S, T>
441{
442 fn len(&self) -> usize {
443 self.indices.len()
444 }
445}
446
447#[cfg(test)]
448mod test {
449 use super::*;
450 #[cfg(feature = "alloc")]
451 use alloc::vec::Vec;
452
453 #[test]
454 fn test_slice_choose() {
455 let mut r = crate::test::rng(107);
456 let chars = [
457 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n',
458 ];
459 let mut chosen = [0i32; 14];
460 // The below all use a binomial distribution with n=1000, p=1/14.
461 // binocdf(40, 1000, 1/14) ~= 2e-5; 1-binocdf(106, ..) ~= 2e-5
462 for _ in 0..1000 {
463 let picked = *chars.choose(&mut r).unwrap();
464 chosen[(picked as usize) - ('a' as usize)] += 1;
465 }
466 for count in chosen.iter() {
467 assert!(40 < *count && *count < 106);
468 }
469
470 chosen.iter_mut().for_each(|x| *x = 0);
471 for _ in 0..1000 {
472 *chosen.choose_mut(&mut r).unwrap() += 1;
473 }
474 for count in chosen.iter() {
475 assert!(40 < *count && *count < 106);
476 }
477
478 let mut v: [isize; 0] = [];
479 assert_eq!(v.choose(&mut r), None);
480 assert_eq!(v.choose_mut(&mut r), None);
481 }
482
483 #[test]
484 fn value_stability_slice() {
485 let mut r = crate::test::rng(413);
486 let chars = [
487 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n',
488 ];
489 let mut nums = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12];
490
491 assert_eq!(chars.choose(&mut r), Some(&'l'));
492 assert_eq!(nums.choose_mut(&mut r), Some(&mut 3));
493
494 assert_eq!(
495 &chars.choose_multiple_array(&mut r),
496 &Some(['f', 'i', 'd', 'b', 'c', 'm', 'j', 'k'])
497 );
498
499 #[cfg(feature = "alloc")]
500 assert_eq!(
501 &chars
502 .choose_multiple(&mut r, 8)
503 .cloned()
504 .collect::<Vec<char>>(),
505 &['h', 'm', 'd', 'b', 'c', 'e', 'n', 'f']
506 );
507
508 #[cfg(feature = "alloc")]
509 assert_eq!(chars.choose_weighted(&mut r, |_| 1), Ok(&'i'));
510 #[cfg(feature = "alloc")]
511 assert_eq!(nums.choose_weighted_mut(&mut r, |_| 1), Ok(&mut 2));
512
513 let mut r = crate::test::rng(414);
514 nums.shuffle(&mut r);
515 assert_eq!(nums, [5, 11, 0, 8, 7, 12, 6, 4, 9, 3, 1, 2, 10]);
516 nums = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12];
517 let res = nums.partial_shuffle(&mut r, 6);
518 assert_eq!(res.0, &mut [7, 12, 6, 8, 1, 9]);
519 assert_eq!(res.1, &mut [0, 11, 2, 3, 4, 5, 10]);
520 }
521
522 #[test]
523 #[cfg_attr(miri, ignore)] // Miri is too slow
524 fn test_shuffle() {
525 let mut r = crate::test::rng(108);
526 let empty: &mut [isize] = &mut [];
527 empty.shuffle(&mut r);
528 let mut one = [1];
529 one.shuffle(&mut r);
530 let b: &[_] = &[1];
531 assert_eq!(one, b);
532
533 let mut two = [1, 2];
534 two.shuffle(&mut r);
535 assert!(two == [1, 2] || two == [2, 1]);
536
537 fn move_last(slice: &mut [usize], pos: usize) {
538 // use slice[pos..].rotate_left(1); once we can use that
539 let last_val = slice[pos];
540 for i in pos..slice.len() - 1 {
541 slice[i] = slice[i + 1];
542 }
543 *slice.last_mut().unwrap() = last_val;
544 }
545 let mut counts = [0i32; 24];
546 for _ in 0..10000 {
547 let mut arr: [usize; 4] = [0, 1, 2, 3];
548 arr.shuffle(&mut r);
549 let mut permutation = 0usize;
550 let mut pos_value = counts.len();
551 for i in 0..4 {
552 pos_value /= 4 - i;
553 let pos = arr.iter().position(|&x| x == i).unwrap();
554 assert!(pos < (4 - i));
555 permutation += pos * pos_value;
556 move_last(&mut arr, pos);
557 assert_eq!(arr[3], i);
558 }
559 for (i, &a) in arr.iter().enumerate() {
560 assert_eq!(a, i);
561 }
562 counts[permutation] += 1;
563 }
564 for count in counts.iter() {
565 // Binomial(10000, 1/24) with average 416.667
566 // Octave: binocdf(n, 10000, 1/24)
567 // 99.9% chance samples lie within this range:
568 assert!(352 <= *count && *count <= 483, "count: {}", count);
569 }
570 }
571
572 #[test]
573 fn test_partial_shuffle() {
574 let mut r = crate::test::rng(118);
575
576 let mut empty: [u32; 0] = [];
577 let res = empty.partial_shuffle(&mut r, 10);
578 assert_eq!((res.0.len(), res.1.len()), (0, 0));
579
580 let mut v = [1, 2, 3, 4, 5];
581 let res = v.partial_shuffle(&mut r, 2);
582 assert_eq!((res.0.len(), res.1.len()), (2, 3));
583 assert!(res.0[0] != res.0[1]);
584 // First elements are only modified if selected, so at least one isn't modified:
585 assert!(res.1[0] == 1 || res.1[1] == 2 || res.1[2] == 3);
586 }
587
588 #[test]
589 #[cfg(feature = "alloc")]
590 #[cfg_attr(miri, ignore)] // Miri is too slow
591 fn test_weighted() {
592 let mut r = crate::test::rng(406);
593 const N_REPS: u32 = 3000;
594 let weights = [1u32, 2, 3, 0, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7];
595 let total_weight = weights.iter().sum::<u32>() as f32;
596
597 let verify = |result: [i32; 14]| {
598 for (i, count) in result.iter().enumerate() {
599 let exp = (weights[i] * N_REPS) as f32 / total_weight;
600 let mut err = (*count as f32 - exp).abs();
601 if err != 0.0 {
602 err /= exp;
603 }
604 assert!(err <= 0.25);
605 }
606 };
607
608 // choose_weighted
609 fn get_weight<T>(item: &(u32, T)) -> u32 {
610 item.0
611 }
612 let mut chosen = [0i32; 14];
613 let mut items = [(0u32, 0usize); 14]; // (weight, index)
614 for (i, item) in items.iter_mut().enumerate() {
615 *item = (weights[i], i);
616 }
617 for _ in 0..N_REPS {
618 let item = items.choose_weighted(&mut r, get_weight).unwrap();
619 chosen[item.1] += 1;
620 }
621 verify(chosen);
622
623 // choose_weighted_mut
624 let mut items = [(0u32, 0i32); 14]; // (weight, count)
625 for (i, item) in items.iter_mut().enumerate() {
626 *item = (weights[i], 0);
627 }
628 for _ in 0..N_REPS {
629 items.choose_weighted_mut(&mut r, get_weight).unwrap().1 += 1;
630 }
631 for (ch, item) in chosen.iter_mut().zip(items.iter()) {
632 *ch = item.1;
633 }
634 verify(chosen);
635
636 // Check error cases
637 let empty_slice = &mut [10][0..0];
638 assert_eq!(
639 empty_slice.choose_weighted(&mut r, |_| 1),
640 Err(WeightError::InvalidInput)
641 );
642 assert_eq!(
643 empty_slice.choose_weighted_mut(&mut r, |_| 1),
644 Err(WeightError::InvalidInput)
645 );
646 assert_eq!(
647 ['x'].choose_weighted_mut(&mut r, |_| 0),
648 Err(WeightError::InsufficientNonZero)
649 );
650 assert_eq!(
651 [0, -1].choose_weighted_mut(&mut r, |x| *x),
652 Err(WeightError::InvalidWeight)
653 );
654 assert_eq!(
655 [-1, 0].choose_weighted_mut(&mut r, |x| *x),
656 Err(WeightError::InvalidWeight)
657 );
658 }
659
660 #[test]
661 #[cfg(feature = "std")]
662 fn test_multiple_weighted_edge_cases() {
663 use super::*;
664
665 let mut rng = crate::test::rng(413);
666
667 // Case 1: One of the weights is 0
668 let choices = [('a', 2), ('b', 1), ('c', 0)];
669 for _ in 0..100 {
670 let result = choices
671 .choose_multiple_weighted(&mut rng, 2, |item| item.1)
672 .unwrap()
673 .collect::<Vec<_>>();
674
675 assert_eq!(result.len(), 2);
676 assert!(!result.iter().any(|val| val.0 == 'c'));
677 }
678
679 // Case 2: All of the weights are 0
680 let choices = [('a', 0), ('b', 0), ('c', 0)];
681 let r = choices.choose_multiple_weighted(&mut rng, 2, |item| item.1);
682 assert_eq!(r.unwrap().len(), 0);
683
684 // Case 3: Negative weights
685 let choices = [('a', -1), ('b', 1), ('c', 1)];
686 let r = choices.choose_multiple_weighted(&mut rng, 2, |item| item.1);
687 assert_eq!(r.unwrap_err(), WeightError::InvalidWeight);
688
689 // Case 4: Empty list
690 let choices = [];
691 let r = choices.choose_multiple_weighted(&mut rng, 0, |_: &()| 0);
692 assert_eq!(r.unwrap().count(), 0);
693
694 // Case 5: NaN weights
695 let choices = [('a', f64::NAN), ('b', 1.0), ('c', 1.0)];
696 let r = choices.choose_multiple_weighted(&mut rng, 2, |item| item.1);
697 assert_eq!(r.unwrap_err(), WeightError::InvalidWeight);
698
699 // Case 6: +infinity weights
700 let choices = [('a', f64::INFINITY), ('b', 1.0), ('c', 1.0)];
701 for _ in 0..100 {
702 let result = choices
703 .choose_multiple_weighted(&mut rng, 2, |item| item.1)
704 .unwrap()
705 .collect::<Vec<_>>();
706 assert_eq!(result.len(), 2);
707 assert!(result.iter().any(|val| val.0 == 'a'));
708 }
709
710 // Case 7: -infinity weights
711 let choices = [('a', f64::NEG_INFINITY), ('b', 1.0), ('c', 1.0)];
712 let r = choices.choose_multiple_weighted(&mut rng, 2, |item| item.1);
713 assert_eq!(r.unwrap_err(), WeightError::InvalidWeight);
714
715 // Case 8: -0 weights
716 let choices = [('a', -0.0), ('b', 1.0), ('c', 1.0)];
717 let r = choices.choose_multiple_weighted(&mut rng, 2, |item| item.1);
718 assert!(r.is_ok());
719 }
720
721 #[test]
722 #[cfg(feature = "std")]
723 fn test_multiple_weighted_distributions() {
724 use super::*;
725
726 // The theoretical probabilities of the different outcomes are:
727 // AB: 0.5 * 0.667 = 0.3333
728 // AC: 0.5 * 0.333 = 0.1667
729 // BA: 0.333 * 0.75 = 0.25
730 // BC: 0.333 * 0.25 = 0.0833
731 // CA: 0.167 * 0.6 = 0.1
732 // CB: 0.167 * 0.4 = 0.0667
733 let choices = [('a', 3), ('b', 2), ('c', 1)];
734 let mut rng = crate::test::rng(414);
735
736 let mut results = [0i32; 3];
737 let expected_results = [5833, 2667, 1500];
738 for _ in 0..10000 {
739 let result = choices
740 .choose_multiple_weighted(&mut rng, 2, |item| item.1)
741 .unwrap()
742 .collect::<Vec<_>>();
743
744 assert_eq!(result.len(), 2);
745
746 match (result[0].0, result[1].0) {
747 ('a', 'b') | ('b', 'a') => {
748 results[0] += 1;
749 }
750 ('a', 'c') | ('c', 'a') => {
751 results[1] += 1;
752 }
753 ('b', 'c') | ('c', 'b') => {
754 results[2] += 1;
755 }
756 (_, _) => panic!("unexpected result"),
757 }
758 }
759
760 let mut diffs = results
761 .iter()
762 .zip(&expected_results)
763 .map(|(a, b)| (a - b).abs());
764 assert!(!diffs.any(|deviation| deviation > 100));
765 }
766}