uuid/lib.rs
1// Copyright 2013-2014 The Rust Project Developers.
2// Copyright 2018 The Uuid Project Developers.
3//
4// See the COPYRIGHT file at the top-level directory of this distribution.
5//
6// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
7// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
8// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
9// option. This file may not be copied, modified, or distributed
10// except according to those terms.
11
12//! Generate and parse universally unique identifiers (UUIDs).
13//!
14//! Here's an example of a UUID:
15//!
16//! ```text
17//! 67e55044-10b1-426f-9247-bb680e5fe0c8
18//! ```
19//!
20//! A UUID is a unique 128-bit value, stored as 16 octets, and regularly
21//! formatted as a hex string in five groups. UUIDs are used to assign unique
22//! identifiers to entities without requiring a central allocating authority.
23//!
24//! They are particularly useful in distributed systems, though can be used in
25//! disparate areas, such as databases and network protocols. Typically a UUID
26//! is displayed in a readable string form as a sequence of hexadecimal digits,
27//! separated into groups by hyphens.
28//!
29//! The uniqueness property is not strictly guaranteed, however for all
30//! practical purposes, it can be assumed that an unintentional collision would
31//! be extremely unlikely.
32//!
33//! UUIDs have a number of standardized encodings that are specified in [RFC 9562](https://www.ietf.org/rfc/rfc9562.html).
34//!
35//! # Getting started
36//!
37//! Add the following to your `Cargo.toml`:
38//!
39//! ```toml
40//! [dependencies.uuid]
41//! version = "1.17.0"
42//! # Lets you generate random UUIDs
43//! features = [
44//! "v4",
45//! ]
46//! ```
47//!
48//! When you want a UUID, you can generate one:
49//!
50//! ```
51//! # fn main() {
52//! # #[cfg(feature = "v4")]
53//! # {
54//! use uuid::Uuid;
55//!
56//! let id = Uuid::new_v4();
57//! # }
58//! # }
59//! ```
60//!
61//! If you have a UUID value, you can use its string literal form inline:
62//!
63//! ```
64//! use uuid::{uuid, Uuid};
65//!
66//! const ID: Uuid = uuid!("67e55044-10b1-426f-9247-bb680e5fe0c8");
67//! ```
68//!
69//! # Working with different UUID versions
70//!
71//! This library supports all standardized methods for generating UUIDs through individual Cargo features.
72//!
73//! By default, this crate depends on nothing but the Rust standard library and can parse and format
74//! UUIDs, but cannot generate them. Depending on the kind of UUID you'd like to work with, there
75//! are Cargo features that enable generating them:
76//!
77//! * `v1` - Version 1 UUIDs using a timestamp and monotonic counter.
78//! * `v3` - Version 3 UUIDs based on the MD5 hash of some data.
79//! * `v4` - Version 4 UUIDs with random data.
80//! * `v5` - Version 5 UUIDs based on the SHA1 hash of some data.
81//! * `v6` - Version 6 UUIDs using a timestamp and monotonic counter.
82//! * `v7` - Version 7 UUIDs using a Unix timestamp.
83//! * `v8` - Version 8 UUIDs using user-defined data.
84//!
85//! This library also includes a [`Builder`] type that can be used to help construct UUIDs of any
86//! version without any additional dependencies or features. It's a lower-level API than [`Uuid`]
87//! that can be used when you need control over implicit requirements on things like a source
88//! of randomness.
89//!
90//! ## Which UUID version should I use?
91//!
92//! If you just want to generate unique identifiers then consider version 4 (`v4`) UUIDs. If you want
93//! to use UUIDs as database keys or need to sort them then consider version 7 (`v7`) UUIDs.
94//! Other versions should generally be avoided unless there's an existing need for them.
95//!
96//! Some UUID versions supersede others. Prefer version 6 over version 1 and version 5 over version 3.
97//!
98//! # Other features
99//!
100//! Other crate features can also be useful beyond the version support:
101//!
102//! * `macro-diagnostics` - enhances the diagnostics of `uuid!` macro.
103//! * `serde` - adds the ability to serialize and deserialize a UUID using
104//! `serde`.
105//! * `borsh` - adds the ability to serialize and deserialize a UUID using
106//! `borsh`.
107//! * `arbitrary` - adds an `Arbitrary` trait implementation to `Uuid` for
108//! fuzzing.
109//! * `fast-rng` - uses a faster algorithm for generating random UUIDs when available.
110//! This feature requires more dependencies to compile, but is just as suitable for
111//! UUIDs as the default algorithm.
112//! * `rng-rand` - forces `rand` as the backend for randomness.
113//! * `rng-getrandom` - forces `getrandom` as the backend for randomness.
114//! * `bytemuck` - adds a `Pod` trait implementation to `Uuid` for byte manipulation
115//!
116//! # Unstable features
117//!
118//! Some features are unstable. They may be incomplete or depend on other
119//! unstable libraries. These include:
120//!
121//! * `zerocopy` - adds support for zero-copy deserialization using the
122//! `zerocopy` library.
123//!
124//! Unstable features may break between minor releases.
125//!
126//! To allow unstable features, you'll need to enable the Cargo feature as
127//! normal, but also pass an additional flag through your environment to opt-in
128//! to unstable `uuid` features:
129//!
130//! ```text
131//! RUSTFLAGS="--cfg uuid_unstable"
132//! ```
133//!
134//! # Building for other targets
135//!
136//! ## WebAssembly
137//!
138//! For WebAssembly, enable the `js` feature:
139//!
140//! ```toml
141//! [dependencies.uuid]
142//! version = "1.17.0"
143//! features = [
144//! "v4",
145//! "v7",
146//! "js",
147//! ]
148//! ```
149//!
150//! ## Embedded
151//!
152//! For embedded targets without the standard library, you'll need to
153//! disable default features when building `uuid`:
154//!
155//! ```toml
156//! [dependencies.uuid]
157//! version = "1.17.0"
158//! default-features = false
159//! ```
160//!
161//! Some additional features are supported in no-std environments:
162//!
163//! * `v1`, `v3`, `v5`, `v6`, and `v8`.
164//! * `serde`.
165//!
166//! If you need to use `v4` or `v7` in a no-std environment, you'll need to
167//! produce random bytes yourself and then pass them to [`Builder::from_random_bytes`]
168//! without enabling the `v4` or `v7` features.
169//!
170//! If you're using `getrandom`, you can specify the `rng-getrandom` or `rng-rand`
171//! features of `uuid` and configure `getrandom`'s provider per its docs. `uuid`
172//! may upgrade its version of `getrandom` in minor releases.
173//!
174//! # Examples
175//!
176//! Parse a UUID given in the simple format and print it as a URN:
177//!
178//! ```
179//! # use uuid::Uuid;
180//! # fn main() -> Result<(), uuid::Error> {
181//! let my_uuid = Uuid::parse_str("a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8")?;
182//!
183//! println!("{}", my_uuid.urn());
184//! # Ok(())
185//! # }
186//! ```
187//!
188//! Generate a random UUID and print it out in hexadecimal form:
189//!
190//! ```
191//! // Note that this requires the `v4` feature to be enabled.
192//! # use uuid::Uuid;
193//! # fn main() {
194//! # #[cfg(feature = "v4")] {
195//! let my_uuid = Uuid::new_v4();
196//!
197//! println!("{}", my_uuid);
198//! # }
199//! # }
200//! ```
201//!
202//! # References
203//!
204//! * [Wikipedia: Universally Unique Identifier](http://en.wikipedia.org/wiki/Universally_unique_identifier)
205//! * [RFC 9562: Universally Unique IDentifiers (UUID)](https://www.ietf.org/rfc/rfc9562.html).
206//!
207//! [`wasm-bindgen`]: https://crates.io/crates/wasm-bindgen
208
209#![no_std]
210#![deny(missing_debug_implementations, missing_docs)]
211#![allow(clippy::mixed_attributes_style)]
212#![doc(
213 html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
214 html_favicon_url = "https://www.rust-lang.org/favicon.ico",
215 html_root_url = "https://docs.rs/uuid/1.17.0"
216)]
217
218#[cfg(any(feature = "std", test))]
219#[macro_use]
220extern crate std;
221
222#[cfg(all(not(feature = "std"), not(test)))]
223#[macro_use]
224extern crate core as std;
225
226mod builder;
227mod error;
228mod non_nil;
229mod parser;
230
231pub mod fmt;
232pub mod timestamp;
233
234use core::hash::{Hash, Hasher};
235pub use timestamp::{context::NoContext, ClockSequence, Timestamp};
236
237#[cfg(any(feature = "v1", feature = "v6"))]
238pub use timestamp::context::Context;
239
240#[cfg(feature = "v7")]
241pub use timestamp::context::ContextV7;
242
243#[cfg(feature = "v1")]
244#[doc(hidden)]
245// Soft-deprecated (Rust doesn't support deprecating re-exports)
246// Use `Context` from the crate root instead
247pub mod v1;
248#[cfg(feature = "v3")]
249mod v3;
250#[cfg(feature = "v4")]
251mod v4;
252#[cfg(feature = "v5")]
253mod v5;
254#[cfg(feature = "v6")]
255mod v6;
256#[cfg(feature = "v7")]
257mod v7;
258#[cfg(feature = "v8")]
259mod v8;
260
261#[cfg(feature = "md5")]
262mod md5;
263#[cfg(feature = "rng")]
264mod rng;
265#[cfg(feature = "sha1")]
266mod sha1;
267
268mod external;
269
270#[macro_use]
271mod macros;
272
273#[doc(hidden)]
274#[cfg(feature = "macro-diagnostics")]
275pub extern crate uuid_macro_internal;
276
277#[doc(hidden)]
278pub mod __macro_support {
279 pub use crate::std::result::Result::{Err, Ok};
280}
281
282use crate::std::convert;
283
284pub use crate::{builder::Builder, error::Error, non_nil::NonNilUuid};
285
286/// A 128-bit (16 byte) buffer containing the UUID.
287///
288/// # ABI
289///
290/// The `Bytes` type is always guaranteed to be have the same ABI as [`Uuid`].
291pub type Bytes = [u8; 16];
292
293/// The version of the UUID, denoting the generating algorithm.
294///
295/// # References
296///
297/// * [Version Field in RFC 9562](https://www.ietf.org/rfc/rfc9562.html#section-4.2)
298#[derive(Clone, Copy, Debug, PartialEq)]
299#[non_exhaustive]
300#[repr(u8)]
301pub enum Version {
302 /// The "nil" (all zeros) UUID.
303 Nil = 0u8,
304 /// Version 1: Timestamp and node ID.
305 Mac = 1,
306 /// Version 2: DCE Security.
307 Dce = 2,
308 /// Version 3: MD5 hash.
309 Md5 = 3,
310 /// Version 4: Random.
311 Random = 4,
312 /// Version 5: SHA-1 hash.
313 Sha1 = 5,
314 /// Version 6: Sortable Timestamp and node ID.
315 SortMac = 6,
316 /// Version 7: Timestamp and random.
317 SortRand = 7,
318 /// Version 8: Custom.
319 Custom = 8,
320 /// The "max" (all ones) UUID.
321 Max = 0xff,
322}
323
324/// The reserved variants of UUIDs.
325///
326/// # References
327///
328/// * [Variant Field in RFC 9562](https://www.ietf.org/rfc/rfc9562.html#section-4.1)
329#[derive(Clone, Copy, Debug, PartialEq)]
330#[non_exhaustive]
331#[repr(u8)]
332pub enum Variant {
333 /// Reserved by the NCS for backward compatibility.
334 NCS = 0u8,
335 /// As described in the RFC 9562 Specification (default).
336 /// (for backward compatibility it is not yet renamed)
337 RFC4122,
338 /// Reserved by Microsoft for backward compatibility.
339 Microsoft,
340 /// Reserved for future expansion.
341 Future,
342}
343
344/// A Universally Unique Identifier (UUID).
345///
346/// # Examples
347///
348/// Parse a UUID given in the simple format and print it as a urn:
349///
350/// ```
351/// # use uuid::Uuid;
352/// # fn main() -> Result<(), uuid::Error> {
353/// let my_uuid = Uuid::parse_str("a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8")?;
354///
355/// println!("{}", my_uuid.urn());
356/// # Ok(())
357/// # }
358/// ```
359///
360/// Create a new random (V4) UUID and print it out in hexadecimal form:
361///
362/// ```
363/// // Note that this requires the `v4` feature enabled in the uuid crate.
364/// # use uuid::Uuid;
365/// # fn main() {
366/// # #[cfg(feature = "v4")] {
367/// let my_uuid = Uuid::new_v4();
368///
369/// println!("{}", my_uuid);
370/// # }
371/// # }
372/// ```
373///
374/// # Formatting
375///
376/// A UUID can be formatted in one of a few ways:
377///
378/// * [`simple`](#method.simple): `a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8`.
379/// * [`hyphenated`](#method.hyphenated):
380/// `a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8`.
381/// * [`urn`](#method.urn): `urn:uuid:A1A2A3A4-B1B2-C1C2-D1D2-D3D4D5D6D7D8`.
382/// * [`braced`](#method.braced): `{a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8}`.
383///
384/// The default representation when formatting a UUID with `Display` is
385/// hyphenated:
386///
387/// ```
388/// # use uuid::Uuid;
389/// # fn main() -> Result<(), uuid::Error> {
390/// let my_uuid = Uuid::parse_str("a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8")?;
391///
392/// assert_eq!(
393/// "a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8",
394/// my_uuid.to_string(),
395/// );
396/// # Ok(())
397/// # }
398/// ```
399///
400/// Other formats can be specified using adapter methods on the UUID:
401///
402/// ```
403/// # use uuid::Uuid;
404/// # fn main() -> Result<(), uuid::Error> {
405/// let my_uuid = Uuid::parse_str("a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8")?;
406///
407/// assert_eq!(
408/// "urn:uuid:a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8",
409/// my_uuid.urn().to_string(),
410/// );
411/// # Ok(())
412/// # }
413/// ```
414///
415/// # Endianness
416///
417/// The specification for UUIDs encodes the integer fields that make up the
418/// value in big-endian order. This crate assumes integer inputs are already in
419/// the correct order by default, regardless of the endianness of the
420/// environment. Most methods that accept integers have a `_le` variant (such as
421/// `from_fields_le`) that assumes any integer values will need to have their
422/// bytes flipped, regardless of the endianness of the environment.
423///
424/// Most users won't need to worry about endianness unless they need to operate
425/// on individual fields (such as when converting between Microsoft GUIDs). The
426/// important things to remember are:
427///
428/// - The endianness is in terms of the fields of the UUID, not the environment.
429/// - The endianness is assumed to be big-endian when there's no `_le` suffix
430/// somewhere.
431/// - Byte-flipping in `_le` methods applies to each integer.
432/// - Endianness roundtrips, so if you create a UUID with `from_fields_le`
433/// you'll get the same values back out with `to_fields_le`.
434///
435/// # ABI
436///
437/// The `Uuid` type is always guaranteed to be have the same ABI as [`Bytes`].
438#[derive(Clone, Copy, Eq, Ord, PartialEq, PartialOrd)]
439#[repr(transparent)]
440// NOTE: Also check `NonNilUuid` when ading new derives here
441#[cfg_attr(
442 all(uuid_unstable, feature = "zerocopy"),
443 derive(
444 zerocopy::IntoBytes,
445 zerocopy::FromBytes,
446 zerocopy::KnownLayout,
447 zerocopy::Immutable,
448 zerocopy::Unaligned
449 )
450)]
451#[cfg_attr(
452 feature = "borsh",
453 derive(borsh_derive::BorshDeserialize, borsh_derive::BorshSerialize)
454)]
455#[cfg_attr(
456 feature = "bytemuck",
457 derive(bytemuck::Zeroable, bytemuck::Pod, bytemuck::TransparentWrapper)
458)]
459pub struct Uuid(Bytes);
460
461impl Uuid {
462 /// UUID namespace for Domain Name System (DNS).
463 pub const NAMESPACE_DNS: Self = Uuid([
464 0x6b, 0xa7, 0xb8, 0x10, 0x9d, 0xad, 0x11, 0xd1, 0x80, 0xb4, 0x00, 0xc0, 0x4f, 0xd4, 0x30,
465 0xc8,
466 ]);
467
468 /// UUID namespace for ISO Object Identifiers (OIDs).
469 pub const NAMESPACE_OID: Self = Uuid([
470 0x6b, 0xa7, 0xb8, 0x12, 0x9d, 0xad, 0x11, 0xd1, 0x80, 0xb4, 0x00, 0xc0, 0x4f, 0xd4, 0x30,
471 0xc8,
472 ]);
473
474 /// UUID namespace for Uniform Resource Locators (URLs).
475 pub const NAMESPACE_URL: Self = Uuid([
476 0x6b, 0xa7, 0xb8, 0x11, 0x9d, 0xad, 0x11, 0xd1, 0x80, 0xb4, 0x00, 0xc0, 0x4f, 0xd4, 0x30,
477 0xc8,
478 ]);
479
480 /// UUID namespace for X.500 Distinguished Names (DNs).
481 pub const NAMESPACE_X500: Self = Uuid([
482 0x6b, 0xa7, 0xb8, 0x14, 0x9d, 0xad, 0x11, 0xd1, 0x80, 0xb4, 0x00, 0xc0, 0x4f, 0xd4, 0x30,
483 0xc8,
484 ]);
485
486 /// Returns the variant of the UUID structure.
487 ///
488 /// This determines the interpretation of the structure of the UUID.
489 /// This method simply reads the value of the variant byte. It doesn't
490 /// validate the rest of the UUID as conforming to that variant.
491 ///
492 /// # Examples
493 ///
494 /// Basic usage:
495 ///
496 /// ```
497 /// # use uuid::{Uuid, Variant};
498 /// # fn main() -> Result<(), uuid::Error> {
499 /// let my_uuid = Uuid::parse_str("02f09a3f-1624-3b1d-8409-44eff7708208")?;
500 ///
501 /// assert_eq!(Variant::RFC4122, my_uuid.get_variant());
502 /// # Ok(())
503 /// # }
504 /// ```
505 ///
506 /// # References
507 ///
508 /// * [Variant Field in RFC 9562](https://www.ietf.org/rfc/rfc9562.html#section-4.1)
509 pub const fn get_variant(&self) -> Variant {
510 match self.as_bytes()[8] {
511 x if x & 0x80 == 0x00 => Variant::NCS,
512 x if x & 0xc0 == 0x80 => Variant::RFC4122,
513 x if x & 0xe0 == 0xc0 => Variant::Microsoft,
514 x if x & 0xe0 == 0xe0 => Variant::Future,
515 // The above match arms are actually exhaustive
516 // We just return `Future` here because we can't
517 // use `unreachable!()` in a `const fn`
518 _ => Variant::Future,
519 }
520 }
521
522 /// Returns the version number of the UUID.
523 ///
524 /// This represents the algorithm used to generate the value.
525 /// This method is the future-proof alternative to [`Uuid::get_version`].
526 ///
527 /// # Examples
528 ///
529 /// Basic usage:
530 ///
531 /// ```
532 /// # use uuid::Uuid;
533 /// # fn main() -> Result<(), uuid::Error> {
534 /// let my_uuid = Uuid::parse_str("02f09a3f-1624-3b1d-8409-44eff7708208")?;
535 ///
536 /// assert_eq!(3, my_uuid.get_version_num());
537 /// # Ok(())
538 /// # }
539 /// ```
540 ///
541 /// # References
542 ///
543 /// * [Version Field in RFC 9562](https://www.ietf.org/rfc/rfc9562.html#section-4.2)
544 pub const fn get_version_num(&self) -> usize {
545 (self.as_bytes()[6] >> 4) as usize
546 }
547
548 /// Returns the version of the UUID.
549 ///
550 /// This represents the algorithm used to generate the value.
551 /// If the version field doesn't contain a recognized version then `None`
552 /// is returned. If you're trying to read the version for a future extension
553 /// you can also use [`Uuid::get_version_num`] to unconditionally return a
554 /// number. Future extensions may start to return `Some` once they're
555 /// standardized and supported.
556 ///
557 /// # Examples
558 ///
559 /// Basic usage:
560 ///
561 /// ```
562 /// # use uuid::{Uuid, Version};
563 /// # fn main() -> Result<(), uuid::Error> {
564 /// let my_uuid = Uuid::parse_str("02f09a3f-1624-3b1d-8409-44eff7708208")?;
565 ///
566 /// assert_eq!(Some(Version::Md5), my_uuid.get_version());
567 /// # Ok(())
568 /// # }
569 /// ```
570 ///
571 /// # References
572 ///
573 /// * [Version Field in RFC 9562](https://www.ietf.org/rfc/rfc9562.html#section-4.2)
574 pub const fn get_version(&self) -> Option<Version> {
575 match self.get_version_num() {
576 0 if self.is_nil() => Some(Version::Nil),
577 1 => Some(Version::Mac),
578 2 => Some(Version::Dce),
579 3 => Some(Version::Md5),
580 4 => Some(Version::Random),
581 5 => Some(Version::Sha1),
582 6 => Some(Version::SortMac),
583 7 => Some(Version::SortRand),
584 8 => Some(Version::Custom),
585 0xf => Some(Version::Max),
586 _ => None,
587 }
588 }
589
590 /// Returns the four field values of the UUID.
591 ///
592 /// These values can be passed to the [`Uuid::from_fields`] method to get
593 /// the original `Uuid` back.
594 ///
595 /// * The first field value represents the first group of (eight) hex
596 /// digits, taken as a big-endian `u32` value. For V1 UUIDs, this field
597 /// represents the low 32 bits of the timestamp.
598 /// * The second field value represents the second group of (four) hex
599 /// digits, taken as a big-endian `u16` value. For V1 UUIDs, this field
600 /// represents the middle 16 bits of the timestamp.
601 /// * The third field value represents the third group of (four) hex digits,
602 /// taken as a big-endian `u16` value. The 4 most significant bits give
603 /// the UUID version, and for V1 UUIDs, the last 12 bits represent the
604 /// high 12 bits of the timestamp.
605 /// * The last field value represents the last two groups of four and twelve
606 /// hex digits, taken in order. The first 1-3 bits of this indicate the
607 /// UUID variant, and for V1 UUIDs, the next 13-15 bits indicate the clock
608 /// sequence and the last 48 bits indicate the node ID.
609 ///
610 /// # Examples
611 ///
612 /// ```
613 /// # use uuid::Uuid;
614 /// # fn main() -> Result<(), uuid::Error> {
615 /// let uuid = Uuid::nil();
616 ///
617 /// assert_eq!(uuid.as_fields(), (0, 0, 0, &[0u8; 8]));
618 ///
619 /// let uuid = Uuid::parse_str("a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8")?;
620 ///
621 /// assert_eq!(
622 /// uuid.as_fields(),
623 /// (
624 /// 0xa1a2a3a4,
625 /// 0xb1b2,
626 /// 0xc1c2,
627 /// &[0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8],
628 /// )
629 /// );
630 /// # Ok(())
631 /// # }
632 /// ```
633 pub fn as_fields(&self) -> (u32, u16, u16, &[u8; 8]) {
634 let bytes = self.as_bytes();
635
636 let d1 = (bytes[0] as u32) << 24
637 | (bytes[1] as u32) << 16
638 | (bytes[2] as u32) << 8
639 | (bytes[3] as u32);
640
641 let d2 = (bytes[4] as u16) << 8 | (bytes[5] as u16);
642
643 let d3 = (bytes[6] as u16) << 8 | (bytes[7] as u16);
644
645 let d4: &[u8; 8] = convert::TryInto::try_into(&bytes[8..16]).unwrap();
646 (d1, d2, d3, d4)
647 }
648
649 /// Returns the four field values of the UUID in little-endian order.
650 ///
651 /// The bytes in the returned integer fields will be converted from
652 /// big-endian order. This is based on the endianness of the UUID,
653 /// rather than the target environment so bytes will be flipped on both
654 /// big and little endian machines.
655 ///
656 /// # Examples
657 ///
658 /// ```
659 /// use uuid::Uuid;
660 ///
661 /// # fn main() -> Result<(), uuid::Error> {
662 /// let uuid = Uuid::parse_str("a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8")?;
663 ///
664 /// assert_eq!(
665 /// uuid.to_fields_le(),
666 /// (
667 /// 0xa4a3a2a1,
668 /// 0xb2b1,
669 /// 0xc2c1,
670 /// &[0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8],
671 /// )
672 /// );
673 /// # Ok(())
674 /// # }
675 /// ```
676 pub fn to_fields_le(&self) -> (u32, u16, u16, &[u8; 8]) {
677 let d1 = (self.as_bytes()[0] as u32)
678 | (self.as_bytes()[1] as u32) << 8
679 | (self.as_bytes()[2] as u32) << 16
680 | (self.as_bytes()[3] as u32) << 24;
681
682 let d2 = (self.as_bytes()[4] as u16) | (self.as_bytes()[5] as u16) << 8;
683
684 let d3 = (self.as_bytes()[6] as u16) | (self.as_bytes()[7] as u16) << 8;
685
686 let d4: &[u8; 8] = convert::TryInto::try_into(&self.as_bytes()[8..16]).unwrap();
687 (d1, d2, d3, d4)
688 }
689
690 /// Returns a 128bit value containing the value.
691 ///
692 /// The bytes in the UUID will be packed directly into a `u128`.
693 ///
694 /// # Examples
695 ///
696 /// ```
697 /// # use uuid::Uuid;
698 /// # fn main() -> Result<(), uuid::Error> {
699 /// let uuid = Uuid::parse_str("a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8")?;
700 ///
701 /// assert_eq!(
702 /// uuid.as_u128(),
703 /// 0xa1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8,
704 /// );
705 /// # Ok(())
706 /// # }
707 /// ```
708 pub const fn as_u128(&self) -> u128 {
709 u128::from_be_bytes(*self.as_bytes())
710 }
711
712 /// Returns a 128bit little-endian value containing the value.
713 ///
714 /// The bytes in the `u128` will be flipped to convert into big-endian
715 /// order. This is based on the endianness of the UUID, rather than the
716 /// target environment so bytes will be flipped on both big and little
717 /// endian machines.
718 ///
719 /// Note that this will produce a different result than
720 /// [`Uuid::to_fields_le`], because the entire UUID is reversed, rather
721 /// than reversing the individual fields in-place.
722 ///
723 /// # Examples
724 ///
725 /// ```
726 /// # use uuid::Uuid;
727 /// # fn main() -> Result<(), uuid::Error> {
728 /// let uuid = Uuid::parse_str("a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8")?;
729 ///
730 /// assert_eq!(
731 /// uuid.to_u128_le(),
732 /// 0xd8d7d6d5d4d3d2d1c2c1b2b1a4a3a2a1,
733 /// );
734 /// # Ok(())
735 /// # }
736 /// ```
737 pub const fn to_u128_le(&self) -> u128 {
738 u128::from_le_bytes(*self.as_bytes())
739 }
740
741 /// Returns two 64bit values containing the value.
742 ///
743 /// The bytes in the UUID will be split into two `u64`.
744 /// The first u64 represents the 64 most significant bits,
745 /// the second one represents the 64 least significant.
746 ///
747 /// # Examples
748 ///
749 /// ```
750 /// # use uuid::Uuid;
751 /// # fn main() -> Result<(), uuid::Error> {
752 /// let uuid = Uuid::parse_str("a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8")?;
753 /// assert_eq!(
754 /// uuid.as_u64_pair(),
755 /// (0xa1a2a3a4b1b2c1c2, 0xd1d2d3d4d5d6d7d8),
756 /// );
757 /// # Ok(())
758 /// # }
759 /// ```
760 pub const fn as_u64_pair(&self) -> (u64, u64) {
761 let value = self.as_u128();
762 ((value >> 64) as u64, value as u64)
763 }
764
765 /// Returns a slice of 16 octets containing the value.
766 ///
767 /// This method borrows the underlying byte value of the UUID.
768 ///
769 /// # Examples
770 ///
771 /// ```
772 /// # use uuid::Uuid;
773 /// let bytes1 = [
774 /// 0xa1, 0xa2, 0xa3, 0xa4,
775 /// 0xb1, 0xb2,
776 /// 0xc1, 0xc2,
777 /// 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8,
778 /// ];
779 /// let uuid1 = Uuid::from_bytes_ref(&bytes1);
780 ///
781 /// let bytes2 = uuid1.as_bytes();
782 /// let uuid2 = Uuid::from_bytes_ref(bytes2);
783 ///
784 /// assert_eq!(uuid1, uuid2);
785 ///
786 /// assert!(std::ptr::eq(
787 /// uuid2 as *const Uuid as *const u8,
788 /// &bytes1 as *const [u8; 16] as *const u8,
789 /// ));
790 /// ```
791 #[inline]
792 pub const fn as_bytes(&self) -> &Bytes {
793 &self.0
794 }
795
796 /// Consumes self and returns the underlying byte value of the UUID.
797 ///
798 /// # Examples
799 ///
800 /// ```
801 /// # use uuid::Uuid;
802 /// let bytes = [
803 /// 0xa1, 0xa2, 0xa3, 0xa4,
804 /// 0xb1, 0xb2,
805 /// 0xc1, 0xc2,
806 /// 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8,
807 /// ];
808 /// let uuid = Uuid::from_bytes(bytes);
809 /// assert_eq!(bytes, uuid.into_bytes());
810 /// ```
811 #[inline]
812 pub const fn into_bytes(self) -> Bytes {
813 self.0
814 }
815
816 /// Returns the bytes of the UUID in little-endian order.
817 ///
818 /// The bytes will be flipped to convert into little-endian order. This is
819 /// based on the endianness of the UUID, rather than the target environment
820 /// so bytes will be flipped on both big and little endian machines.
821 ///
822 /// # Examples
823 ///
824 /// ```
825 /// use uuid::Uuid;
826 ///
827 /// # fn main() -> Result<(), uuid::Error> {
828 /// let uuid = Uuid::parse_str("a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8")?;
829 ///
830 /// assert_eq!(
831 /// uuid.to_bytes_le(),
832 /// ([
833 /// 0xa4, 0xa3, 0xa2, 0xa1, 0xb2, 0xb1, 0xc2, 0xc1, 0xd1, 0xd2,
834 /// 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8
835 /// ])
836 /// );
837 /// # Ok(())
838 /// # }
839 /// ```
840 pub const fn to_bytes_le(&self) -> Bytes {
841 [
842 self.0[3], self.0[2], self.0[1], self.0[0], self.0[5], self.0[4], self.0[7], self.0[6],
843 self.0[8], self.0[9], self.0[10], self.0[11], self.0[12], self.0[13], self.0[14],
844 self.0[15],
845 ]
846 }
847
848 /// Tests if the UUID is nil (all zeros).
849 pub const fn is_nil(&self) -> bool {
850 self.as_u128() == u128::MIN
851 }
852
853 /// Tests if the UUID is max (all ones).
854 pub const fn is_max(&self) -> bool {
855 self.as_u128() == u128::MAX
856 }
857
858 /// A buffer that can be used for `encode_...` calls, that is
859 /// guaranteed to be long enough for any of the format adapters.
860 ///
861 /// # Examples
862 ///
863 /// ```
864 /// # use uuid::Uuid;
865 /// let uuid = Uuid::nil();
866 ///
867 /// assert_eq!(
868 /// uuid.simple().encode_lower(&mut Uuid::encode_buffer()),
869 /// "00000000000000000000000000000000"
870 /// );
871 ///
872 /// assert_eq!(
873 /// uuid.hyphenated()
874 /// .encode_lower(&mut Uuid::encode_buffer()),
875 /// "00000000-0000-0000-0000-000000000000"
876 /// );
877 ///
878 /// assert_eq!(
879 /// uuid.urn().encode_lower(&mut Uuid::encode_buffer()),
880 /// "urn:uuid:00000000-0000-0000-0000-000000000000"
881 /// );
882 /// ```
883 pub const fn encode_buffer() -> [u8; fmt::Urn::LENGTH] {
884 [0; fmt::Urn::LENGTH]
885 }
886
887 /// If the UUID is the correct version (v1, v6, or v7) this will return
888 /// the timestamp in a version-agnostic [`Timestamp`]. For other versions
889 /// this will return `None`.
890 ///
891 /// # Roundtripping
892 ///
893 /// This method is unlikely to roundtrip a timestamp in a UUID due to the way
894 /// UUIDs encode timestamps. The timestamp returned from this method will be truncated to
895 /// 100ns precision for version 1 and 6 UUIDs, and to millisecond precision for version 7 UUIDs.
896 pub const fn get_timestamp(&self) -> Option<Timestamp> {
897 match self.get_version() {
898 Some(Version::Mac) => {
899 let (ticks, counter) = timestamp::decode_gregorian_timestamp(self);
900
901 Some(Timestamp::from_gregorian(ticks, counter))
902 }
903 Some(Version::SortMac) => {
904 let (ticks, counter) = timestamp::decode_sorted_gregorian_timestamp(self);
905
906 Some(Timestamp::from_gregorian(ticks, counter))
907 }
908 Some(Version::SortRand) => {
909 let millis = timestamp::decode_unix_timestamp_millis(self);
910
911 let seconds = millis / 1000;
912 let nanos = ((millis % 1000) * 1_000_000) as u32;
913
914 Some(Timestamp::from_unix_time(seconds, nanos, 0, 0))
915 }
916 _ => None,
917 }
918 }
919
920 /// If the UUID is the correct version (v1, or v6) this will return the
921 /// node value as a 6-byte array. For other versions this will return `None`.
922 pub const fn get_node_id(&self) -> Option<[u8; 6]> {
923 match self.get_version() {
924 Some(Version::Mac) | Some(Version::SortMac) => {
925 let mut node_id = [0; 6];
926
927 node_id[0] = self.0[10];
928 node_id[1] = self.0[11];
929 node_id[2] = self.0[12];
930 node_id[3] = self.0[13];
931 node_id[4] = self.0[14];
932 node_id[5] = self.0[15];
933
934 Some(node_id)
935 }
936 _ => None,
937 }
938 }
939}
940
941impl Hash for Uuid {
942 fn hash<H: Hasher>(&self, state: &mut H) {
943 state.write(&self.0);
944 }
945}
946
947impl Default for Uuid {
948 #[inline]
949 fn default() -> Self {
950 Uuid::nil()
951 }
952}
953
954impl AsRef<Uuid> for Uuid {
955 #[inline]
956 fn as_ref(&self) -> &Uuid {
957 self
958 }
959}
960
961impl AsRef<[u8]> for Uuid {
962 #[inline]
963 fn as_ref(&self) -> &[u8] {
964 &self.0
965 }
966}
967
968#[cfg(feature = "std")]
969impl From<Uuid> for std::vec::Vec<u8> {
970 fn from(value: Uuid) -> Self {
971 value.0.to_vec()
972 }
973}
974
975#[cfg(feature = "std")]
976impl std::convert::TryFrom<std::vec::Vec<u8>> for Uuid {
977 type Error = Error;
978
979 fn try_from(value: std::vec::Vec<u8>) -> Result<Self, Self::Error> {
980 Uuid::from_slice(&value)
981 }
982}
983
984#[cfg(feature = "serde")]
985pub mod serde {
986 //! Adapters for alternative `serde` formats.
987 //!
988 //! This module contains adapters you can use with [`#[serde(with)]`](https://serde.rs/field-attrs.html#with)
989 //! to change the way a [`Uuid`](../struct.Uuid.html) is serialized
990 //! and deserialized.
991
992 pub use crate::external::serde_support::{braced, compact, simple, urn};
993}
994
995#[cfg(test)]
996mod tests {
997 use super::*;
998
999 use crate::std::string::{String, ToString};
1000
1001 #[cfg(all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")))]
1002 use wasm_bindgen_test::*;
1003
1004 macro_rules! check {
1005 ($buf:ident, $format:expr, $target:expr, $len:expr, $cond:expr) => {
1006 $buf.clear();
1007 write!($buf, $format, $target).unwrap();
1008 assert!($buf.len() == $len);
1009 assert!($buf.chars().all($cond), "{}", $buf);
1010 };
1011 }
1012
1013 pub const fn new() -> Uuid {
1014 Uuid::from_bytes([
1015 0xF9, 0x16, 0x8C, 0x5E, 0xCE, 0xB2, 0x4F, 0xAA, 0xB6, 0xBF, 0x32, 0x9B, 0xF3, 0x9F,
1016 0xA1, 0xE4,
1017 ])
1018 }
1019
1020 pub const fn new2() -> Uuid {
1021 Uuid::from_bytes([
1022 0xF9, 0x16, 0x8C, 0x5E, 0xCE, 0xB2, 0x4F, 0xAB, 0xB6, 0xBF, 0x32, 0x9B, 0xF3, 0x9F,
1023 0xA1, 0xE4,
1024 ])
1025 }
1026
1027 #[test]
1028 #[cfg_attr(
1029 all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1030 wasm_bindgen_test
1031 )]
1032 fn test_uuid_compare() {
1033 let uuid1 = new();
1034 let uuid2 = new2();
1035
1036 assert_eq!(uuid1, uuid1);
1037 assert_eq!(uuid2, uuid2);
1038
1039 assert_ne!(uuid1, uuid2);
1040 assert_ne!(uuid2, uuid1);
1041 }
1042
1043 #[test]
1044 #[cfg_attr(
1045 all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1046 wasm_bindgen_test
1047 )]
1048 fn test_uuid_default() {
1049 let default_uuid = Uuid::default();
1050 let nil_uuid = Uuid::nil();
1051
1052 assert_eq!(default_uuid, nil_uuid);
1053 }
1054
1055 #[test]
1056 #[cfg_attr(
1057 all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1058 wasm_bindgen_test
1059 )]
1060 fn test_uuid_display() {
1061 use crate::std::fmt::Write;
1062
1063 let uuid = new();
1064 let s = uuid.to_string();
1065 let mut buffer = String::new();
1066
1067 assert_eq!(s, uuid.hyphenated().to_string());
1068
1069 check!(buffer, "{}", uuid, 36, |c| c.is_lowercase()
1070 || c.is_digit(10)
1071 || c == '-');
1072 }
1073
1074 #[test]
1075 #[cfg_attr(
1076 all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1077 wasm_bindgen_test
1078 )]
1079 fn test_uuid_lowerhex() {
1080 use crate::std::fmt::Write;
1081
1082 let mut buffer = String::new();
1083 let uuid = new();
1084
1085 check!(buffer, "{:x}", uuid, 36, |c| c.is_lowercase()
1086 || c.is_digit(10)
1087 || c == '-');
1088 }
1089
1090 // noinspection RsAssertEqual
1091 #[test]
1092 #[cfg_attr(
1093 all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1094 wasm_bindgen_test
1095 )]
1096 fn test_uuid_operator_eq() {
1097 let uuid1 = new();
1098 let uuid1_dup = uuid1.clone();
1099 let uuid2 = new2();
1100
1101 assert!(uuid1 == uuid1);
1102 assert!(uuid1 == uuid1_dup);
1103 assert!(uuid1_dup == uuid1);
1104
1105 assert!(uuid1 != uuid2);
1106 assert!(uuid2 != uuid1);
1107 assert!(uuid1_dup != uuid2);
1108 assert!(uuid2 != uuid1_dup);
1109 }
1110
1111 #[test]
1112 #[cfg_attr(
1113 all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1114 wasm_bindgen_test
1115 )]
1116 fn test_uuid_to_string() {
1117 use crate::std::fmt::Write;
1118
1119 let uuid = new();
1120 let s = uuid.to_string();
1121 let mut buffer = String::new();
1122
1123 assert_eq!(s.len(), 36);
1124
1125 check!(buffer, "{}", s, 36, |c| c.is_lowercase()
1126 || c.is_digit(10)
1127 || c == '-');
1128 }
1129
1130 #[test]
1131 #[cfg_attr(
1132 all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1133 wasm_bindgen_test
1134 )]
1135 fn test_non_conforming() {
1136 let from_bytes =
1137 Uuid::from_bytes([4, 54, 67, 12, 43, 2, 2, 76, 32, 50, 87, 5, 1, 33, 43, 87]);
1138
1139 assert_eq!(from_bytes.get_version(), None);
1140 }
1141
1142 #[test]
1143 #[cfg_attr(
1144 all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1145 wasm_bindgen_test
1146 )]
1147 fn test_nil() {
1148 let nil = Uuid::nil();
1149 let not_nil = new();
1150
1151 assert!(nil.is_nil());
1152 assert!(!not_nil.is_nil());
1153
1154 assert_eq!(nil.get_version(), Some(Version::Nil));
1155 assert_eq!(not_nil.get_version(), Some(Version::Random));
1156
1157 assert_eq!(
1158 nil,
1159 Builder::from_bytes([0; 16])
1160 .with_version(Version::Nil)
1161 .into_uuid()
1162 );
1163 }
1164
1165 #[test]
1166 #[cfg_attr(
1167 all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1168 wasm_bindgen_test
1169 )]
1170 fn test_max() {
1171 let max = Uuid::max();
1172 let not_max = new();
1173
1174 assert!(max.is_max());
1175 assert!(!not_max.is_max());
1176
1177 assert_eq!(max.get_version(), Some(Version::Max));
1178 assert_eq!(not_max.get_version(), Some(Version::Random));
1179
1180 assert_eq!(
1181 max,
1182 Builder::from_bytes([0xff; 16])
1183 .with_version(Version::Max)
1184 .into_uuid()
1185 );
1186 }
1187
1188 #[test]
1189 #[cfg_attr(
1190 all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1191 wasm_bindgen_test
1192 )]
1193 fn test_predefined_namespaces() {
1194 assert_eq!(
1195 Uuid::NAMESPACE_DNS.hyphenated().to_string(),
1196 "6ba7b810-9dad-11d1-80b4-00c04fd430c8"
1197 );
1198 assert_eq!(
1199 Uuid::NAMESPACE_URL.hyphenated().to_string(),
1200 "6ba7b811-9dad-11d1-80b4-00c04fd430c8"
1201 );
1202 assert_eq!(
1203 Uuid::NAMESPACE_OID.hyphenated().to_string(),
1204 "6ba7b812-9dad-11d1-80b4-00c04fd430c8"
1205 );
1206 assert_eq!(
1207 Uuid::NAMESPACE_X500.hyphenated().to_string(),
1208 "6ba7b814-9dad-11d1-80b4-00c04fd430c8"
1209 );
1210 }
1211
1212 #[cfg(feature = "v3")]
1213 #[test]
1214 #[cfg_attr(
1215 all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1216 wasm_bindgen_test
1217 )]
1218 fn test_get_version_v3() {
1219 let uuid = Uuid::new_v3(&Uuid::NAMESPACE_DNS, "rust-lang.org".as_bytes());
1220
1221 assert_eq!(uuid.get_version().unwrap(), Version::Md5);
1222 assert_eq!(uuid.get_version_num(), 3);
1223 }
1224
1225 #[test]
1226 #[cfg_attr(
1227 all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1228 wasm_bindgen_test
1229 )]
1230 fn test_get_timestamp_unsupported_version() {
1231 let uuid = new();
1232
1233 assert_ne!(Version::Mac, uuid.get_version().unwrap());
1234 assert_ne!(Version::SortMac, uuid.get_version().unwrap());
1235 assert_ne!(Version::SortRand, uuid.get_version().unwrap());
1236
1237 assert!(uuid.get_timestamp().is_none());
1238 }
1239
1240 #[test]
1241 #[cfg_attr(
1242 all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1243 wasm_bindgen_test
1244 )]
1245 fn test_get_node_id_unsupported_version() {
1246 let uuid = new();
1247
1248 assert_ne!(Version::Mac, uuid.get_version().unwrap());
1249 assert_ne!(Version::SortMac, uuid.get_version().unwrap());
1250
1251 assert!(uuid.get_node_id().is_none());
1252 }
1253
1254 #[test]
1255 #[cfg_attr(
1256 all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1257 wasm_bindgen_test
1258 )]
1259 fn test_get_variant() {
1260 let uuid1 = new();
1261 let uuid2 = Uuid::parse_str("550e8400-e29b-41d4-a716-446655440000").unwrap();
1262 let uuid3 = Uuid::parse_str("67e55044-10b1-426f-9247-bb680e5fe0c8").unwrap();
1263 let uuid4 = Uuid::parse_str("936DA01F9ABD4d9dC0C702AF85C822A8").unwrap();
1264 let uuid5 = Uuid::parse_str("F9168C5E-CEB2-4faa-D6BF-329BF39FA1E4").unwrap();
1265 let uuid6 = Uuid::parse_str("f81d4fae-7dec-11d0-7765-00a0c91e6bf6").unwrap();
1266
1267 assert_eq!(uuid1.get_variant(), Variant::RFC4122);
1268 assert_eq!(uuid2.get_variant(), Variant::RFC4122);
1269 assert_eq!(uuid3.get_variant(), Variant::RFC4122);
1270 assert_eq!(uuid4.get_variant(), Variant::Microsoft);
1271 assert_eq!(uuid5.get_variant(), Variant::Microsoft);
1272 assert_eq!(uuid6.get_variant(), Variant::NCS);
1273 }
1274
1275 #[test]
1276 #[cfg_attr(
1277 all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1278 wasm_bindgen_test
1279 )]
1280 fn test_to_simple_string() {
1281 let uuid1 = new();
1282 let s = uuid1.simple().to_string();
1283
1284 assert_eq!(s.len(), 32);
1285 assert!(s.chars().all(|c| c.is_digit(16)));
1286 }
1287
1288 #[test]
1289 #[cfg_attr(
1290 all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1291 wasm_bindgen_test
1292 )]
1293 fn test_hyphenated_string() {
1294 let uuid1 = new();
1295 let s = uuid1.hyphenated().to_string();
1296
1297 assert_eq!(36, s.len());
1298 assert!(s.chars().all(|c| c.is_digit(16) || c == '-'));
1299 }
1300
1301 #[test]
1302 #[cfg_attr(
1303 all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1304 wasm_bindgen_test
1305 )]
1306 fn test_upper_lower_hex() {
1307 use std::fmt::Write;
1308
1309 let mut buf = String::new();
1310 let u = new();
1311
1312 macro_rules! check {
1313 ($buf:ident, $format:expr, $target:expr, $len:expr, $cond:expr) => {
1314 $buf.clear();
1315 write!($buf, $format, $target).unwrap();
1316 assert_eq!($len, buf.len());
1317 assert!($buf.chars().all($cond), "{}", $buf);
1318 };
1319 }
1320
1321 check!(buf, "{:x}", u, 36, |c| c.is_lowercase()
1322 || c.is_digit(10)
1323 || c == '-');
1324 check!(buf, "{:X}", u, 36, |c| c.is_uppercase()
1325 || c.is_digit(10)
1326 || c == '-');
1327 check!(buf, "{:#x}", u, 36, |c| c.is_lowercase()
1328 || c.is_digit(10)
1329 || c == '-');
1330 check!(buf, "{:#X}", u, 36, |c| c.is_uppercase()
1331 || c.is_digit(10)
1332 || c == '-');
1333
1334 check!(buf, "{:X}", u.hyphenated(), 36, |c| c.is_uppercase()
1335 || c.is_digit(10)
1336 || c == '-');
1337 check!(buf, "{:X}", u.simple(), 32, |c| c.is_uppercase()
1338 || c.is_digit(10));
1339 check!(buf, "{:#X}", u.hyphenated(), 36, |c| c.is_uppercase()
1340 || c.is_digit(10)
1341 || c == '-');
1342 check!(buf, "{:#X}", u.simple(), 32, |c| c.is_uppercase()
1343 || c.is_digit(10));
1344
1345 check!(buf, "{:x}", u.hyphenated(), 36, |c| c.is_lowercase()
1346 || c.is_digit(10)
1347 || c == '-');
1348 check!(buf, "{:x}", u.simple(), 32, |c| c.is_lowercase()
1349 || c.is_digit(10));
1350 check!(buf, "{:#x}", u.hyphenated(), 36, |c| c.is_lowercase()
1351 || c.is_digit(10)
1352 || c == '-');
1353 check!(buf, "{:#x}", u.simple(), 32, |c| c.is_lowercase()
1354 || c.is_digit(10));
1355 }
1356
1357 #[test]
1358 #[cfg_attr(
1359 all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1360 wasm_bindgen_test
1361 )]
1362 fn test_to_urn_string() {
1363 let uuid1 = new();
1364 let ss = uuid1.urn().to_string();
1365 let s = &ss[9..];
1366
1367 assert!(ss.starts_with("urn:uuid:"));
1368 assert_eq!(s.len(), 36);
1369 assert!(s.chars().all(|c| c.is_digit(16) || c == '-'));
1370 }
1371
1372 #[test]
1373 #[cfg_attr(
1374 all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1375 wasm_bindgen_test
1376 )]
1377 fn test_to_simple_string_matching() {
1378 let uuid1 = new();
1379
1380 let hs = uuid1.hyphenated().to_string();
1381 let ss = uuid1.simple().to_string();
1382
1383 let hsn = hs.chars().filter(|&c| c != '-').collect::<String>();
1384
1385 assert_eq!(hsn, ss);
1386 }
1387
1388 #[test]
1389 #[cfg_attr(
1390 all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1391 wasm_bindgen_test
1392 )]
1393 fn test_string_roundtrip() {
1394 let uuid = new();
1395
1396 let hs = uuid.hyphenated().to_string();
1397 let uuid_hs = Uuid::parse_str(&hs).unwrap();
1398 assert_eq!(uuid_hs, uuid);
1399
1400 let ss = uuid.to_string();
1401 let uuid_ss = Uuid::parse_str(&ss).unwrap();
1402 assert_eq!(uuid_ss, uuid);
1403 }
1404
1405 #[test]
1406 #[cfg_attr(
1407 all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1408 wasm_bindgen_test
1409 )]
1410 fn test_from_fields() {
1411 let d1: u32 = 0xa1a2a3a4;
1412 let d2: u16 = 0xb1b2;
1413 let d3: u16 = 0xc1c2;
1414 let d4 = [0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8];
1415
1416 let u = Uuid::from_fields(d1, d2, d3, &d4);
1417
1418 let expected = "a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8";
1419 let result = u.simple().to_string();
1420 assert_eq!(result, expected);
1421 }
1422
1423 #[test]
1424 #[cfg_attr(
1425 all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1426 wasm_bindgen_test
1427 )]
1428 fn test_from_fields_le() {
1429 let d1: u32 = 0xa4a3a2a1;
1430 let d2: u16 = 0xb2b1;
1431 let d3: u16 = 0xc2c1;
1432 let d4 = [0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8];
1433
1434 let u = Uuid::from_fields_le(d1, d2, d3, &d4);
1435
1436 let expected = "a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8";
1437 let result = u.simple().to_string();
1438 assert_eq!(result, expected);
1439 }
1440
1441 #[test]
1442 #[cfg_attr(
1443 all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1444 wasm_bindgen_test
1445 )]
1446 fn test_as_fields() {
1447 let u = new();
1448 let (d1, d2, d3, d4) = u.as_fields();
1449
1450 assert_ne!(d1, 0);
1451 assert_ne!(d2, 0);
1452 assert_ne!(d3, 0);
1453 assert_eq!(d4.len(), 8);
1454 assert!(!d4.iter().all(|&b| b == 0));
1455 }
1456
1457 #[test]
1458 #[cfg_attr(
1459 all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1460 wasm_bindgen_test
1461 )]
1462 fn test_fields_roundtrip() {
1463 let d1_in: u32 = 0xa1a2a3a4;
1464 let d2_in: u16 = 0xb1b2;
1465 let d3_in: u16 = 0xc1c2;
1466 let d4_in = &[0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8];
1467
1468 let u = Uuid::from_fields(d1_in, d2_in, d3_in, d4_in);
1469 let (d1_out, d2_out, d3_out, d4_out) = u.as_fields();
1470
1471 assert_eq!(d1_in, d1_out);
1472 assert_eq!(d2_in, d2_out);
1473 assert_eq!(d3_in, d3_out);
1474 assert_eq!(d4_in, d4_out);
1475 }
1476
1477 #[test]
1478 #[cfg_attr(
1479 all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1480 wasm_bindgen_test
1481 )]
1482 fn test_fields_le_roundtrip() {
1483 let d1_in: u32 = 0xa4a3a2a1;
1484 let d2_in: u16 = 0xb2b1;
1485 let d3_in: u16 = 0xc2c1;
1486 let d4_in = &[0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8];
1487
1488 let u = Uuid::from_fields_le(d1_in, d2_in, d3_in, d4_in);
1489 let (d1_out, d2_out, d3_out, d4_out) = u.to_fields_le();
1490
1491 assert_eq!(d1_in, d1_out);
1492 assert_eq!(d2_in, d2_out);
1493 assert_eq!(d3_in, d3_out);
1494 assert_eq!(d4_in, d4_out);
1495 }
1496
1497 #[test]
1498 #[cfg_attr(
1499 all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1500 wasm_bindgen_test
1501 )]
1502 fn test_fields_le_are_actually_le() {
1503 let d1_in: u32 = 0xa1a2a3a4;
1504 let d2_in: u16 = 0xb1b2;
1505 let d3_in: u16 = 0xc1c2;
1506 let d4_in = &[0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8];
1507
1508 let u = Uuid::from_fields(d1_in, d2_in, d3_in, d4_in);
1509 let (d1_out, d2_out, d3_out, d4_out) = u.to_fields_le();
1510
1511 assert_eq!(d1_in, d1_out.swap_bytes());
1512 assert_eq!(d2_in, d2_out.swap_bytes());
1513 assert_eq!(d3_in, d3_out.swap_bytes());
1514 assert_eq!(d4_in, d4_out);
1515 }
1516
1517 #[test]
1518 #[cfg_attr(
1519 all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1520 wasm_bindgen_test
1521 )]
1522 fn test_from_u128() {
1523 let v_in: u128 = 0xa1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8;
1524
1525 let u = Uuid::from_u128(v_in);
1526
1527 let expected = "a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8";
1528 let result = u.simple().to_string();
1529 assert_eq!(result, expected);
1530 }
1531
1532 #[test]
1533 #[cfg_attr(
1534 all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1535 wasm_bindgen_test
1536 )]
1537 fn test_from_u128_le() {
1538 let v_in: u128 = 0xd8d7d6d5d4d3d2d1c2c1b2b1a4a3a2a1;
1539
1540 let u = Uuid::from_u128_le(v_in);
1541
1542 let expected = "a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8";
1543 let result = u.simple().to_string();
1544 assert_eq!(result, expected);
1545 }
1546
1547 #[test]
1548 #[cfg_attr(
1549 all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1550 wasm_bindgen_test
1551 )]
1552 fn test_from_u64_pair() {
1553 let high_in: u64 = 0xa1a2a3a4b1b2c1c2;
1554 let low_in: u64 = 0xd1d2d3d4d5d6d7d8;
1555
1556 let u = Uuid::from_u64_pair(high_in, low_in);
1557
1558 let expected = "a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8";
1559 let result = u.simple().to_string();
1560 assert_eq!(result, expected);
1561 }
1562
1563 #[test]
1564 #[cfg_attr(
1565 all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1566 wasm_bindgen_test
1567 )]
1568 fn test_u128_roundtrip() {
1569 let v_in: u128 = 0xa1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8;
1570
1571 let u = Uuid::from_u128(v_in);
1572 let v_out = u.as_u128();
1573
1574 assert_eq!(v_in, v_out);
1575 }
1576
1577 #[test]
1578 #[cfg_attr(
1579 all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1580 wasm_bindgen_test
1581 )]
1582 fn test_u128_le_roundtrip() {
1583 let v_in: u128 = 0xd8d7d6d5d4d3d2d1c2c1b2b1a4a3a2a1;
1584
1585 let u = Uuid::from_u128_le(v_in);
1586 let v_out = u.to_u128_le();
1587
1588 assert_eq!(v_in, v_out);
1589 }
1590
1591 #[test]
1592 #[cfg_attr(
1593 all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1594 wasm_bindgen_test
1595 )]
1596 fn test_u64_pair_roundtrip() {
1597 let high_in: u64 = 0xa1a2a3a4b1b2c1c2;
1598 let low_in: u64 = 0xd1d2d3d4d5d6d7d8;
1599
1600 let u = Uuid::from_u64_pair(high_in, low_in);
1601 let (high_out, low_out) = u.as_u64_pair();
1602
1603 assert_eq!(high_in, high_out);
1604 assert_eq!(low_in, low_out);
1605 }
1606
1607 #[test]
1608 #[cfg_attr(
1609 all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1610 wasm_bindgen_test
1611 )]
1612 fn test_u128_le_is_actually_le() {
1613 let v_in: u128 = 0xa1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8;
1614
1615 let u = Uuid::from_u128(v_in);
1616 let v_out = u.to_u128_le();
1617
1618 assert_eq!(v_in, v_out.swap_bytes());
1619 }
1620
1621 #[test]
1622 #[cfg_attr(
1623 all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1624 wasm_bindgen_test
1625 )]
1626 fn test_from_slice() {
1627 let b = [
1628 0xa1, 0xa2, 0xa3, 0xa4, 0xb1, 0xb2, 0xc1, 0xc2, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6,
1629 0xd7, 0xd8,
1630 ];
1631
1632 let u = Uuid::from_slice(&b).unwrap();
1633 let expected = "a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8";
1634
1635 assert_eq!(u.simple().to_string(), expected);
1636 }
1637
1638 #[test]
1639 #[cfg_attr(
1640 all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1641 wasm_bindgen_test
1642 )]
1643 fn test_from_bytes() {
1644 let b = [
1645 0xa1, 0xa2, 0xa3, 0xa4, 0xb1, 0xb2, 0xc1, 0xc2, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6,
1646 0xd7, 0xd8,
1647 ];
1648
1649 let u = Uuid::from_bytes(b);
1650 let expected = "a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8";
1651
1652 assert_eq!(u.simple().to_string(), expected);
1653 }
1654
1655 #[test]
1656 #[cfg_attr(
1657 all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1658 wasm_bindgen_test
1659 )]
1660 fn test_as_bytes() {
1661 let u = new();
1662 let ub = u.as_bytes();
1663 let ur: &[u8] = u.as_ref();
1664
1665 assert_eq!(ub.len(), 16);
1666 assert_eq!(ur.len(), 16);
1667 assert!(!ub.iter().all(|&b| b == 0));
1668 assert!(!ur.iter().all(|&b| b == 0));
1669 }
1670
1671 #[test]
1672 #[cfg(feature = "std")]
1673 #[cfg_attr(
1674 all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1675 wasm_bindgen_test
1676 )]
1677 fn test_convert_vec() {
1678 use crate::std::{convert::TryInto, vec::Vec};
1679
1680 let u = new();
1681 let ub: &[u8] = u.as_ref();
1682
1683 let v: Vec<u8> = u.into();
1684
1685 assert_eq!(&v, ub);
1686
1687 let uv: Uuid = v.try_into().unwrap();
1688
1689 assert_eq!(uv, u);
1690 }
1691
1692 #[test]
1693 #[cfg_attr(
1694 all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1695 wasm_bindgen_test
1696 )]
1697 fn test_bytes_roundtrip() {
1698 let b_in: crate::Bytes = [
1699 0xa1, 0xa2, 0xa3, 0xa4, 0xb1, 0xb2, 0xc1, 0xc2, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6,
1700 0xd7, 0xd8,
1701 ];
1702
1703 let u = Uuid::from_slice(&b_in).unwrap();
1704
1705 let b_out = u.as_bytes();
1706
1707 assert_eq!(&b_in, b_out);
1708 }
1709
1710 #[test]
1711 #[cfg_attr(
1712 all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1713 wasm_bindgen_test
1714 )]
1715 fn test_bytes_le_roundtrip() {
1716 let b = [
1717 0xa1, 0xa2, 0xa3, 0xa4, 0xb1, 0xb2, 0xc1, 0xc2, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6,
1718 0xd7, 0xd8,
1719 ];
1720
1721 let u1 = Uuid::from_bytes(b);
1722
1723 let b_le = u1.to_bytes_le();
1724
1725 let u2 = Uuid::from_bytes_le(b_le);
1726
1727 assert_eq!(u1, u2);
1728 }
1729
1730 #[test]
1731 #[cfg_attr(
1732 all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1733 wasm_bindgen_test
1734 )]
1735 fn test_iterbytes_impl_for_uuid() {
1736 let mut set = std::collections::HashSet::new();
1737 let id1 = new();
1738 let id2 = new2();
1739 set.insert(id1.clone());
1740
1741 assert!(set.contains(&id1));
1742 assert!(!set.contains(&id2));
1743 }
1744}