
Avro 1.0 Specification

Table of contents

1 Introduction..2

2 Schema Declaration... 2

2.1 Primitive Types... 2

2.2 Complex Types..2

2.3 Identifiers...5

3 Data Serialization...5

3.1 Primitive Type Serialization..5

3.2 Complex Type Serialization.. 6

4 Object Container Files... 8

5 Protocol Declaration.. 9

5.1 Messages..10

5.2 Sample Protocol...10

6 Protocol Wire Format...10

6.1 Message Transport...10

6.2 Message Framing...11

6.3 Handshake... 12

6.4 Call Format..13

7 Schema Resolution...14

Copyright © 2009 The Apache Software Foundation. All rights reserved.

1. Introduction

This document defines Avro. It is intended to be the authoritative specification.
Implementations of Avro must adhere to this document.

2. Schema Declaration

A Schema is represented in JSON by one of:

• A JSON string, naming a defined type.
• A JSON object, of the form:

{"type": "typeName" ...attributes...}
where typeName is either a primitive or derived type name, as defined below. Attributes
not defined in this document are permitted as metadata, but must not affect the format of
serialized data.

• A JSON array, representing a union of embedded types.

2.1. Primitive Types

The set of primitive type names is:

• string: unicode character sequence
• bytes: sequence of 8-bit bytes
• int: 32-bit signed integer
• long: 64-bit signed integer
• float: 32-bit IEEE floating-point number
• double: 64-bit IEEE floating-point number
• boolean: a binary value
• null: no value

Primitive types have no specified attributes.

Primitive type names are also defined type names. Thus, for example, the schema "string" is
equivalent to:
{"type": "string"}

2.2. Complex Types

Avro supports six kinds of complex types: records, enums, arrays, maps, unions and fixed.

2.2.1. Records

Records use the type name "record" and support two attributes:

Avro 1.0 Specification

Page 2
Copyright © 2009 The Apache Software Foundation. All rights reserved.

http://www.json.org/

• name: a JSON string providing the name of the record (required).
• fields: a JSON array, listing fields (required). Each field is a JSON object with the

following attributes:
• name: a JSON string providing the name of the field (required), and
• type: A JSON object defining a schema, or a JSON string naming a record

definition (required).
• default: A default value for this field, used when reading instances that lack this

field (optional). Permitted values depend on the field's schema type, according to the
table below. Default values for union fields correspond the first schema in the union.

avro type json type example

string string "foo"

bytes string "\u00FF"

int,long integer 1

float,double number 1.1

boolean boolean true

null null null

record object {"a": 1}

enum string "FOO"

array array [1]

map object {"a": 1}

Table 1: field default values

For example, a linked-list of 64-bit values may be defined with:

{
"type": "record",
"name": "LongList",
"fields" : [
{"name": "value", "type": "long"}, // each element has a

long
{"name": "next", "type": ["LongList", "null"]} // optional next element

]
}

2.2.2. Enums

Avro 1.0 Specification

Page 3
Copyright © 2009 The Apache Software Foundation. All rights reserved.

Enums use the type name "enum" and support the following attributes:

• name: a JSON string providing the name of the enum (required).
• symbols: a JSON array, listing symbols, as JSON strings (required).

For example, playing card suits might be defined with:

{ "type": "enum",
"name": "Suit",
"symbols" : ["SPADES", "HEARTS", "DIAMONDS", "CLUBS"]

}

2.2.3. Arrays

Arrays use the type name "array" and support a single attribute:

• items: the schema of the array's items.

For example, an array of strings is declared with:
{"type": "array", "items": "string"}

2.2.4. Maps

Maps use the type name "map" and support one attribute:

• values: the schema of the map's values.

Map keys are assumed to be strings.

For example, a map from string to long is declared with:
{"type": "map", "values": "long"}

2.2.5. Unions

Unions, as mentioned above, are represented using JSON arrays. For example,
["string", "null"] declares a schema which may be either a string or null.

Unions may not contain more than one schema with the same type, except for the named
types record, fixed and enum. For example, unions containing two array types or two map
types are not permitted, but two types with different names are permitted. (Names permit
efficient resolution when reading and writing unions.)

Unions may not immediately contain other unions.

2.2.6. Fixed

Avro 1.0 Specification

Page 4
Copyright © 2009 The Apache Software Foundation. All rights reserved.

Fixed uses the type name "fixed" and supports two attributes:

• name: the name of the fixed (required).
• size: an integer, specifying the number of bytes per value (required).

For example, 16-byte quantity may be declared with:
{"type": "fixed", "size": 16, "name": "md5"}

2.3. Identifiers

Record, field and enum names must:

• start with [A-Za-z_]
• subsequently contain only [A-Za-z0-9_]

3. Data Serialization

Avro data is always serialized with its schema. Files that store Avro data should always also
include the schema for that data in the same file. Avro-based remote procedure call (RPC)
systems must also guarantee that remote recipients of data have a copy of the schema used to
write that data.

Because the schema used to write data is always available when the data is read, Avro data
itself is not tagged with type information. The schema is required to parse data.

In general, both serialization and deserialization proceed as a depth-first, left-to-right
traversal of the schema, serializing primitive types as they are encountered.

3.1. Primitive Type Serialization

Primitive types are serialized as follows:

• a string is serialized as a long followed by that many bytes of UTF-8 encoded
character data.

For example, the three-character string "foo" would be serialized as 3 (encoded as hex
0C) followed by the UTF-8 encoding of 'f', 'o', and 'o' (the hex bytes 66 6f 6f):
0C 66 6f 6f

• bytes are serialized as a long followed by that many bytes of data.
• int and long values are written using variable-length zig-zag coding. Some examples:

value hex

0 00

-1 01

Avro 1.0 Specification

Page 5
Copyright © 2009 The Apache Software Foundation. All rights reserved.

http://lucene.apache.org/java/2_4_0/fileformats.html#VInt
http://code.google.com/apis/protocolbuffers/docs/encoding.html#types

1 02

-2 03

2 04

...

-64 7f

64 80 01

...

• a float is written as 4 bytes
• a double is written as 8 bytes
• a boolean is written as a single byte whose value is either 0 (false) or 1 (true).
• null is written as zero bytes.

3.2. Complex Type Serialization

Complex types are serialized as follows:

3.2.1. Records

A record is serialized by serializing the values of its fields in the order that they are declared.
In other words, a record is serialized as just the concatenation of its field's serializations.
Field values are serialized per their schema.

For example, the record schema

{
"type": "record",
"name": "test",
"fields" : [
{"name": "a", "type": "long"},
{"name": "b", "type": "string"}

]
}

An instance of this record whose a field has value 27 (encoded as hex 36) and whose b field
has value "foo" (encoded as hex bytes OC 66 6f 6f), would be serialized simply as the
concatenation of these, namely the hex byte sequence:
36 0C 66 6f 6f

3.2.2. Enums

Avro 1.0 Specification

Page 6
Copyright © 2009 The Apache Software Foundation. All rights reserved.

An enum is serialized by a int, representing the zero-based position of the symbol in the
schema.

For example, consider the enum:

{"type": "enum", "name": "Foo", "symbols": ["A", "B", "C", "D"] }

This would be serialized by an int between zero and three, with zero indicating "A", and 3
indicating "D".

3.2.3. Arrays

Arrays are serialized as a series of blocks. Each block consists of a long count value,
followed by that many array items. A block with count zero indicates the end of the array.
Each item is serialized per the array's item schema.

If a block's count is negative, then the count is followed immediately by a long block size,
indicating the number of bytes in the block. The actual count in this case is the absolute value
of the count written.

For example, the array schema
{"type": "array", "items": "long"}

serializing an array containing the items 3 and 27 could be serialized as 2 (encoded as hex
04) followed by 3 and 27 (encoded as hex 06 36) terminated by zero:
04 06 36 00

The blocked representation permits one to read and write arrays larger than can be buffered
in memory, since one can start writing items without knowing the full length of the array.
The optional block sizes permit fast skipping through data, e.g., when projecting a record to a
subset of its fields.

NOTE: Blocking has not yet been fully implemented and may change. Arbitrarily large
objects must be easily writable and readable but until we have proven this with an
implementation and tests this part of the specification should be considered draft.

3.2.4. Maps

Maps are serialized as a series of blocks. Each block consists of a long count value,
followed by that many key/value pairs. A block with count zero indicates the end of the map.
Each item is serialized per the map's value schema.

If a block's count is negative, then the count is followed immediately by a long block size,
indicating the number of bytes in the block. The actual count in this case is the absolute value

Avro 1.0 Specification

Page 7
Copyright © 2009 The Apache Software Foundation. All rights reserved.

of the count written.

The blocked representation permits one to read and write maps larger than can be buffered in
memory, since one can start writing items without knowing the full length of the map. The
optional block sizes permit fast skipping through data, e.g., when projecting a record to a
subset of its fields.

NOTE: Blocking has not yet been fully implemented and may change. Arbitrarily large
objects must be easily writable and readable but until we have proven this with an
implementation and tests this part of the specification should be considered draft.

3.2.5. Unions

A union is serialized by first writing a long value indicating the zero-based position within
the union of the schema of its value. The value is then serialized per the indicated schema
within the union.

For example, the union schema ["string","null"] would serialize:

• null as 1 (the index of "null" in the union, encoded as hex 02):
02

• the string "a" as zero (the index of "string" in the union), followed by the serialized
string:
00 02 61

3.2.6. Fixed

Fixed instances are serialized using the number of bytes declared in the schema.

4. Object Container Files

Avro includes a simple object container file format. A file has a schema, and all objects
stored in the file must be written according to that schema. Objects are stored in blocks that
may be compressed. Syncronization markers are used between blocks to permit efficient
splitting of files for MapReduce processing.

Files may include arbitrary user-specified metadata.

A file consists of:

• A header, followed by
• one or more blocks.

There are two kinds of blocks, normal and metadata. All files must contain at least one
metadata block. A file terminates with its last metadata block. Any data after the last

Avro 1.0 Specification

Page 8
Copyright © 2009 The Apache Software Foundation. All rights reserved.

metadata block is ignored.

A header consists of:

• Four bytes, ASCII 'O', 'b', 'j', followed by zero.
• A 16-byte sync marker.

A metadata block consists of:

• The file's 16-byte sync marker.
• A long with value -1, identifying this as a metadata block.
• A long indicating the size in bytes of this block.
• A long indicating the number of metadata key/value pairs.
• For each pair, a string key and bytes value.
• The size in bytes of this block as a 4-byte big-endian integer.

When a file is closed normally, this terminates the file and permits one to efficiently seek
to the start of the metadata. If the sync marker there does not match that at the start of the
file, then one must scan for the last metadata in the file.

The following metadata properties are reserved:

• schema contains the schema of objects stored in the file, as a string.
• count contains the number of objects in the file as a decimal ASCII string.
• codec the name of the compression codec used to compress blocks.

A normal block consists of:

• The file's 16-byte sync marker.
• A long indicating the size in bytes of this block in the file.
• The serialized objects. If a codec is specified, this is compressed by that codec.

Note that this format supports appends, since multiple metadata blocks are permitted.

To be robust to application failure, implementations can write metadata periodically to limit
the amount of the file that must be scanned to find the last metadata block.

5. Protocol Declaration

Avro protocols describe RPC interfaces. Like schemas, they are defined with JSON text.

A protocol is a JSON object with the following attributes:

• name, string, to distinguish it from other protocols;
• namespace, a string which qualifies the name;
• types, a list of record, enum and error definitions. An error definition is just like a record

definition except it uses "error" instead of "record". Note that forward references to

Avro 1.0 Specification

Page 9
Copyright © 2009 The Apache Software Foundation. All rights reserved.

records, enums and errors are not currently supported.
• messages, a JSON object whose keys are message names and whose values are objects

whose attributes are described below. No two messages may have the same name.

5.1. Messages

A message has attributes:

• a request, a list of named, typed parameter schemas (this has the same form as the fields
of a record declaration);

• a response schema; and
• an optional union of error schemas.

5.2. Sample Protocol

For example, one may define a simple HelloWorld protocol with:

{
"namespace": "com.acme",
"protocol": "HelloWorld",

"types": [
{"name": "Greeting", "type": "record", "fields": [
{"name": "message", "type": "string"}]}

{"name": "Curse", "type": "error", "fields": [
{"name": "message", "type": "string"}]}

],

"messages": {
"hello": {
"request": {"greeting": "Greeting" },
"response": "Greeting",
"errors": ["Curse"]

}
}

}

6. Protocol Wire Format

6.1. Message Transport

Messages may be transmitted via different transport mechanisms. For example, one might
use the HTTP, raw sockets, or SSL, etc. This document specifies formats for request and
response message data, but it does not yet specify any details of how message data is
encapsulated in different transports.

Avro 1.0 Specification

Page 10
Copyright © 2009 The Apache Software Foundation. All rights reserved.

To the transport, a message is an opaque byte sequence.

A transport is a system that supports:

• session creation
A session forms the context under which multiple messages may be transcieved. A client
must establish a session with a server before any requests may be processed.

• transmission of request messages
Once a session has been established, clients may send servers request messages using that
session.

• receipt of corresponding response messages
Servers will send a response message back to the client corresponding to each request
message. The mechanism of that correspondance is transport-specific. For example, in
HTTP it might be implicit, since HTTP directly supports requests and responses. But a
transport that multiplexes many client threads over a single socket would need to tag
messages with unique identifiers.

6.2. Message Framing

Avro messages are framed as a list of buffers.

Framing is a layer between messages and the transport. It exists to optimize certain
operations.

The format of framed message data is:

• a series of buffers, where each buffer consists of:
• a four-byte, big-endian buffer length, followed by
• that many bytes of buffer data.

• A message is always terminated by a zero-lenghted buffer.

Framing is transparent to request and response message formats (described below). Any
message may be presented as a single or multiple buffers.

Framing can permit readers to more efficiently get different buffers from different sources
and for writers to more efficiently store different buffers to different destinations. In
particular, it can reduce the number of times large binary objects are copied. For example, if
an RPC parameter consists of a megabyte of file data, that data can be copied directly to a
socket from a file descriptor, and, on the other end, it could be written directly to a file
descriptor, never entering user space.

Avro 1.0 Specification

Page 11
Copyright © 2009 The Apache Software Foundation. All rights reserved.

A simple, recommended, framing policy is for writers to create a new segment whenever a
single binary object is written that is larger than a normal output buffer. Small objects are
then appended in buffers, while larger objects are written as their own buffers. When a reader
then tries to read a large object the runtime can hand it an entire buffer directly, without
having to copy it.

6.3. Handshake

RPC sessions are initiated by handshake. The purpose of the handshake is to ensure that the
client and the server have each other's protocol definition, so that the client can correctly
deserialize responses, and the server can correctly deserialize requests. Both clients and
servers should maintain a cache of recently seen protocols, so that, in most cases, a
handshake will be completed without extra round-trip network exchanges or the transmission
of full protocol text.

The handshake process uses the following record schemas:

{
"type": "record",
"name": "HandshakeRequest", "namespace":"org.apache.avro.ipc",
"fields": [
{"name": "clientHash",
"type": {"type": "fixed", "name": "MD5", "size": 16}},
{"name": "clientProtocol", "type": ["null", "string"]},
{"name": "serverHash", "type": "MD5"},
{"name": "meta", "type": ["null", {"type": "map", "values": "bytes"}]}

]
}
{
"type": "record",
"name": "HandshakeResponse", "namespace": "org.apache.avro.ipc",
"fields": [
{"name": "match",
"type": {"type": "enum", "name": "HandshakeMatch",

"symbols": ["BOTH", "CLIENT", "NONE"]}},
{"name": "serverProtocol",
"type": ["null", "string"]},
{"name": "serverHash",
"type": ["null", {"type": "fixed", "name": "MD5", "size": 16}]},
{"name": "meta",
"type": ["null", {"type": "map", "values": "bytes"}]}

]
}

• In a new session, a client first sends a HandshakeRequest containing just the hash of
its protocol and of the server's protocol (clientHash!=null,
clientProtocol=null, serverHash!=null), where the hashes are 128-bit

Avro 1.0 Specification

Page 12
Copyright © 2009 The Apache Software Foundation. All rights reserved.

MD5 hashes of the JSON protocol text. If a client has never connected to a given server,
it sends its hash as a guess of the server's hash, otherwise it sends the hash that it
previously obtained from this server.

• The server responds with a HandshakeResponse containing one of:
• match=BOTH, serverProtocol=null, serverHash=null if the client

sent the valid hash of the server's protocol and the server knows what protocol
corresponds to the client's hash. In this case, the request is complete and the session is
established.

• match=CLIENT, serverProtocol!=null, serverHash!=null if the
server has previously seen the client's protocol, but the client sent an incorrect hash of
the server's protocol. The client must then re-send the request with the correct server
hash.

• match=NONE, serverProtocol!=null, serverHash!=null if the
server has not previously seen the client's protocol and the client sent and incorrect
hash of the server's protocol.

In this case The client must then re-submit its request with its protocol text
(clientHash!=null, clientProtocol!=null, serverHash!=null)
and the server should respond with with a successful match (match=BOTH,
serverProtocol=null, serverHash=null) as above.

Until a connection is established, call request data sent by the client must be preceded by a
HandshakeRequest and call response data returned by the server must be preceded by a
HandshakeResponse. A connection is not established until a HandshakeResponse
with match=BOTH or match=CLIENT is returned. In these cases, the call response data
immmediately follows the HandShakeResponse. When match=NONE no response call
data is sent and the request call data is ignored.

The meta field is reserved for future handshake enhancements.

6.4. Call Format

A call consists of a request message paired with its resulting response or error message.
Requests and responses contain extensible metadata, and both kinds of messages are framed
as described above.

The format of a call request is:

• request metadata, a map with values of type bytes
• the message name, an Avro string, followed by
• the message parameters. Parameters are serialized according to the message's request

declaration.

Avro 1.0 Specification

Page 13
Copyright © 2009 The Apache Software Foundation. All rights reserved.

The format of a call response is:

• response metadata, a map with values of type bytes
• a one-byte error flag boolean, followed by either:

• if the error flag is false, the message response, serialized per the message's response
schema.

• if the error flag is true, the error, serialized per the message's error union schema.

7. Schema Resolution

A reader of Avro data, whether from an RPC or a file, can always parse that data because its
schema is provided. But that schema may not be exactly the schema that was expected. For
example, if the data was written with a different version of the software than it is read, then
records may have had fields added or removed. This section specifies how such schema
differences may be resolved.

We call the schema used to write the data as the writer's schema, and the schema that the
application expects the reader's schema. To resolve differences between these two schemas,
the following resolution algorithm is recommended.

• It is an error if the two schemas do not match.

To match, one of the following must hold:

• both schemas are arrays whose item types match
• both schemas are maps whose value types match
• both schemas are enums whose names match
• both schemas are fixed whose sizes and names match
• both schemas are records with the same name
• either schema is a union
• both schemas have same primitive type
• the writer's schema may be promoted to the reader's as follows:

• int is promotable to long, float, or double
• long is promotable to float or double
• float is promotable to double

• if both are records:
if the writer's record contains a field with a name not present in the reader's record, that
writer's value is ignored.

schemas for fields with the same name in both records are resolved recursively.

Note that method parameter lists are equivalent to records. Note also that, since the

Avro 1.0 Specification

Page 14
Copyright © 2009 The Apache Software Foundation. All rights reserved.

ordering of record fields may vary between reader and writer, method parameter list order
may also vary.

• if both are enums:
if the writer's symbol is not present in the reader's enum, then the enum value is unset.

• if both are arrays:
This resolution algorithm is applied recursively to the reader's and writer's array item
schemas.

• if both are maps:
This resolution algorithm is applied recursively to the reader's and writer's value schemas.

• if both are unions:
The first schema in the reader's union that matches the selected writer's union schema is
recursively resolved against it. if none match, an error is signalled.

• if reader's is a union, but writer's is not
The first schema in the reader's union that matches the writer's schema is recursively
resolved against it. If none match, an error is signalled.

• if writer's is a union, but reader's is not
If the reader's schema matches the selected writer's schema, it is recursively resolved
against it. If they do not match, an error is signalled.

Avro 1.0 Specification

Page 15
Copyright © 2009 The Apache Software Foundation. All rights reserved.

	1 Introduction
	2 Schema Declaration
	2.1 Primitive Types
	2.2 Complex Types
	2.2.1 Records
	2.2.2 Enums
	2.2.3 Arrays
	2.2.4 Maps
	2.2.5 Unions
	2.2.6 Fixed

	2.3 Identifiers

	3 Data Serialization
	3.1 Primitive Type Serialization
	3.2 Complex Type Serialization
	3.2.1 Records
	3.2.2 Enums
	3.2.3 Arrays
	3.2.4 Maps
	3.2.5 Unions
	3.2.6 Fixed

	4 Object Container Files
	5 Protocol Declaration
	5.1 Messages
	5.2 Sample Protocol

	6 Protocol Wire Format
	6.1 Message Transport
	6.2 Message Framing
	6.3 Handshake
	6.4 Call Format

	7 Schema Resolution

