Apache Avro# 1.7.5 Getting Started
(Java)

Table of contents

I 1o 11/ [o USSP 2
2 DEfINING @ SCREMAL.......cceceeee et e e enee s 3
3 Serializing and deserializing with code generation............ccevererenieneneniesieeieesese e 3
3.1 Compiling the SChEMEL........coiiie e 3
I O = 1 Lo U PR 4
RIS (= 1741 oo TR USSR 5
IR D= 74 o S 5
3.5 Compiling and running the example COE............ccerieireiereeie e 6
4 Serializing and deserializing without code generation............cccooeverereneneeieeneenese e 6
4.1 CrEALING USEIS.....eteiteiueeueeueetesses s st ste st asesseeae e et e sesseabesseasesseese e e e s et e sseabesbeaneeneeneennens 6
TS AT] oo TSRS 7
TR DI s = 7] oo TSR 7

4.4 Compiling and running the example COE............cceiveiriierieie e 8

Apache Avro# 1.7.5 Getting Started (Java)

Thisisashort guide for getting started with Apache Avro# using Java. This guide only
covers using Avro for data serialization; see Patrick Hunt's Avro RPC Quick Start for a good
introduction to using Avro for RPC.

1 Download

Avro implementations for C, C++, C#, Java, PHP, Python, and Ruby can be downloaded
from the Apache Avro# Releases page. This guide uses Avro 1.7.5, the latest version at
the time of writing. For the examplesin this guide, download avro-1.7.5.jar and avro-
tools-1.7.5.jar. The Avro Javaimplementation also depends on the Jackson JSON library.
From the Jackson download page, download the core-asl and mapper-ad jars. Add
avro-1.7.5.jar and the Jackson jars to your project's classpath (avro-tools will be used for
code generation).

Alternatively, if you are using Maven, add the following dependency to your POM:

Aswell asthe Avro Maven plugin (for performing code generation):

https://github.com/phunt/avro-rpc-quickstart
http://avro.apache.org/releases.html
http://jackson.codehaus.org/
http://wiki.fasterxml.com/JacksonDownload

Apache Avro# 1.7.5 Getting Started (Java)

Y ou may also build the required Avro jars from source. Building Avro is beyond the scope of
this guide; see the Build Documentation page in the wiki for more information.

2 Defining a schema

Avro schemas are defined using JSON. Schemas are composed of primitive types (nul |,
bool ean,i nt,l ong,fl oat,doubl e, byt es, and st ri ng) and complex types
(record,enumarray, map, uni on, andf i xed). You can learn more about Avro
schemas and types from the specification, but for now let's start with a simple schema
example, user.avsc:

{"namespace": "exanple.avro",
"type": "record",
"name": "User",
"fields": [
{"nane": "nane", "type": "string"},
{"name": "favorite_nunber”, "type": ["int", "null"]},
{"name": "favorite_color", "type": ["string", "null"]}

This schema defines a record representing a hypothetical user. (Note that a schemafile can
only contain a single schema definition.) At minimum, arecord definition must include

itstype ("type": "record"),aname("nanme": "User"), andfields, inthiscase
name, favorite_nunber,andfavorite_col or.Weaso define anamespace
("nanespace": "exanpl e. avro"), which together with the name attribute defines the

"full name" of the schema (exanpl e. avr o. User in thiscase).

Fields are defined via an array of objects, each of which defines a name and type (other
attributes are optional, see the record specification for more details). The type attribute

of afield is another schema object, which can be either a primitive or complex type. For
example, the nane field of our User schemaisthe primitivetype st ri ng, whereas the
favorite_nunber andfavorite_col or fiedsareboth uni ons, represented by
JSON arrays. uni onsare acomplex type that can be any of the typeslisted in the array; e.g.,
favorite_nunber caneither beani nt ornul | , essentially making it an optional field.

3 Serializing and deserializing with code generation

3.1 Compiling the schema

Code generation allows us to automatically create classes based on our previously-defined
schema. Once we have defined the relevant classes, there is no need to use the schema
directly in our programs. We use the avro-tools jar to generate code as follows:

Page 3

https://cwiki.apache.org/AVRO/build-documentation.html
spec.html#schema_primitive
spec.html#schema_complex
spec.html#schema_record

Apache Avro# 1.7.5 Getting Started (Java)

Thiswill generate the appropriate source files in a package based on the schema's namespace
in the provided destination folder. For instance, to generate aUser classin package
exanpl e. avr o from the schema defined above, run

Note that if you using the Avro Maven plugin, there is no need to manually invoke the
schema compiler; the plugin automatically performs code generation on any .avsc files
present in the configured source directory.

3.2 Creating Users

Now that we've completed the code generation, let's create some User s, serializethemto a
data file on disk, and then read back the file and deserialize the User objects.

First let's create some User s and set their fields.

As shown in this example, Avro objects can be created either by invoking a constructor
directly or by using abuilder. Unlike constructors, builders will automatically set any default
values specified in the schema. Additionally, builders validate the data as it set, whereas
objects constructed directly will not cause an error until the object is serialized. However,
using constructors directly generally offers better performance, as builders create a copy of
the datastructure before it is written.

Note that we do not set user 1'sfavorite color. Since that record is of type[" st ri ng",
"nul 1 "],wecanethersetittoastringorleaveitnul | ;itisessentially optional.
Similarly, we set user 3'sfavorite number to null (using a builder requires setting al fields,
even if they are null).

Apache Avro# 1.7.5 Getting Started (Java)

3.3 Serializing

Now let's serialize our User sto disk.

We createaDat unWW i t er , which converts Java objects into an in-memory serialized
format. The Speci fi cDat umW i t er classisused with generated classes and extracts the
schema from the specified generated type.

Next we create aDat aFi | eW i t er , which writes the serialized records, aswell asthe
schema, to thefile specified inthedat aFi | eW i t er. cr eat e cal. We write our usersto
thefileviacalstothedat aFi | eWi t er . append method. When we are done writing,
we close the datafile.

3.4 Deserializing

Finally, let's deserialize the datafile we just created.

This snippet will output:

Deserializing is very similar to serializing. We create a Speci f i cDat unReader ,
analogous to the Speci fi cDat umW i t er we used in seridization, which convertsin-

Page 5

Apache Avro# 1.7.5 Getting Started (Java)

memory serialized itemsinto instances of our generated class, in this case User . We pass the
Dat unReader and the previously created Fi | e to aDat aFi | eReader , analogous to the
Dat aFi | eW i t er, which reads the datafile on disk.

Next we use the Dat aFi | eReader toiterate through the serialized User s and print
the deserialized object to stdout. Note how we perform the iteration: we create asingle
User object which we store the current deserialized user in, and pass this record object
to every call of dat aFi | eReader . next . Thisisa performance optimization that
allowsthe Dat aFi | eReader to reusethe sameUser object rather than allocating a
new User for every iteration, which can be very expensive in terms of object allocation
and garbage collection if we deserialize alarge data file. While this technique isthe
standard way to iterate through a datafile, it'salso possibletousef or (User user
dat aFi | eReader) if performance is not a concern.

3.5 Compiling and running the example code

This example code is included as a Maven project in the examples/java-example directory
in the Avro docs. From this directory, execute the following commands to build and run the
example:

$ nmvn conpile # includes code generation via Avro Maven plugin
$ m/n -q exec:java -Dexec. nai nCl ass=exanpl e. Speci fi cMi n

4 Serializing and deserializing without code generation

Datain Avro is aways stored with its corresponding schema, meaning we can always read a
serialized item regardless of whether we know the schema ahead of time. Thisallows usto
perform serialization and deserialization without code generation.

Let's go over the same example as in the previous section, but without using code generation:
we'll create some users, serialize them to adata file on disk, and then read back the file and
deserialize the users objects.

4.1 Creating users

First, weuseaPar ser to read our schema definition and create a Schena object.

Schema schema = new Parser().parse(new Fil e("user.avsc"));

Using this schema, let's create some users.

Ceneri cRecord userl = new Ceneri cDat a. Record(schem) ;

Page 6

Apache Avro# 1.7.5 Getting Started (Java)

user 1. put ("nanme", "Alyssa");
user 1. put ("favorite_nunmber", 256);
/'l Leave favorite color null

Ceneri cRecord user2 = new Ceneri cDat a. Record(schem) ;

user 2. put ("nanme", "Ben");
user 2. put ("favorite_nunmber", 7);
user2.put("favorite_color", "red");

Since we're not using code generation, we use Gener i cRecor dsto represent users.
Gener i cRecor d usesthe schemato verify that we only specify valid fields. If we try to
set anon-existent field (e.g., user 1. put ("favorite_animal ", "cat")),well get
an Avr oRunt i meExcept i on when we run the program.

Note that we do not set user 1'sfavorite color. Since that record isof type["stri ng",
"nul 1 "],wecanethersetittoastringorleaveitnul | ;itisessentially optional.

4.2 Serializing

Now that we've created our user objects, serializing and deserializing them is amost identical
to the example above which uses code generation. The main difference is that we use generic
instead of specific readers and writers.

First we'll serialize our usersto adatafile on disk.

/1 Serialize userl and user2 to disk
File file = new Fil e("users. avro");
Dat umW i t er <Generi cRecord> datumiNiter = new GenericDatum/Niter<Generi cRecord>(schenn);
Dat aFi | eWit er <Generi cRecord> dataFil eWiter = new
Dat aFi | eWi t er <Generi cRecord>(datunmiNiter);
dataFil eWiter.create(schema, file);
dataFi |l eWiter.append(userl);
dataFi |l eWiter.append(user?2);
dataFil eWiter.close();

We create aDat umW i t er , which converts Java objects into an in-memory serialized
format. Since we are not using code generation, we create aGener i cDat umWi ter. It
requires the schema both to determine how to write the Gener i cRecor dsand to verify
that all non-nullable fields are present.

Asin the code generation example, we also create aDat aFi | eW i t er , which

writes the serialized records, as well as the schema, to the file specified in the

dat aFi |l eWiter. creat e cal. Wewrite our usersto thefile viacallsto the

dat aFi |l eWi t er. append method. When we are done writing, we close the datafile.

4.3 Deserializing

Finally, we'll deserialize the datafile we just created.

Page 7

Apache Avro# 1.7.5 Getting Started (Java)

This outputs:

Deserializing is very similar to serializing. We create aGener i cDat unReader ,
analogousto the Gener i cDat umW i t er we used in serialization, which convertsin-
memory serialized itemsinto Gener i cRecor ds. We pass the Dat unmReader and the
previously created Fi | e toaDat aFi | eReader , analogousto the Dat aFi | eWiter,
which reads the data file on disk.

Next, we use the Dat aFi | eReader to iterate through the serialized users and print

the deserialized object to stdout. Note how we perform the iteration: we create asingle
CGener i cRecor d object which we store the current deserialized user in, and pass
thisrecord object to every call of dat aFi | eReader . next . Thisisaperformance
optimization that allows the Dat aFi | eReader to reuse the same record object rather than
allocating anew Gener i cRecor d for every iteration, which can be very expensive in
terms of object alocation and garbage collection if we deserialize alarge datafile. While
this technique is the standard way to iterate through a datafile, it's also possibleto use f or
(Ceneri cRecord user : dataFil eReader) if performanceisnot aconcern.

4.4 Compiling and running the example code

This example code isincluded as a Maven project in the examples/java-example directory
in the Avro docs. From this directory, execute the following commands to build and run the
example:

	Table of contents
	1 Download
	2 Defining a schema
	3 Serializing and deserializing with code generation
	3.1 Compiling the schema
	3.2 Creating Users
	3.3 Serializing
	3.4 Deserializing
	3.5 Compiling and running the example code

	4 Serializing and deserializing without code generation
	4.1 Creating users
	4.2 Serializing
	4.3 Deserializing
	4.4 Compiling and running the example code

