
Apache Avro# 1.8.1 Specification

Table of contents

1 Introduction..3

2 Schema Declaration... 3

2.1 Primitive Types... 3

2.2 Complex Types..3

2.3 Names.. 6

2.4 Aliases... 7

3 Data Serialization...8

3.1 Encodings.. 8

3.2 Binary Encoding..8

3.3 JSON Encoding... 11

4 Sort Order...12

5 Object Container Files... 12

5.1 Required Codecs..14

5.2 Optional Codecs.. 14

6 Protocol Declaration.. 14

6.1 Messages..14

6.2 Sample Protocol...15

7 Protocol Wire Format...16

7.1 Message Transport...16

7.2 Message Framing...16

7.3 Handshake... 17

7.4 Call Format..19

8 Schema Resolution...19

9 Parsing Canonical Form for Schemas..21

Copyright © 2012 The Apache Software Foundation. All rights reserved.

9.1 Transforming into Parsing Canonical Form.. 21

9.2 Schema Fingerprints..22

10 Logical Types...24

10.1 Decimal..24

10.2 Date..25

10.3 Time (millisecond precision)... 25

10.4 Time (microsecond precision)... 25

10.5 Timestamp (millisecond precision)... 25

10.6 Timestamp (microsecond precision)..25

10.7 Duration... 26

Apache Avro# 1.8.1 Specification

Page 2
Copyright © 2012 The Apache Software Foundation. All rights reserved.

1. Introduction

This document defines Apache Avro. It is intended to be the authoritative specification.
Implementations of Avro must adhere to this document.

2. Schema Declaration

A Schema is represented in JSON by one of:

• A JSON string, naming a defined type.
• A JSON object, of the form:

{"type": "typeName" ...attributes...}
where typeName is either a primitive or derived type name, as defined below. Attributes
not defined in this document are permitted as metadata, but must not affect the format of
serialized data.

• A JSON array, representing a union of embedded types.

2.1. Primitive Types

The set of primitive type names is:

• null: no value
• boolean: a binary value
• int: 32-bit signed integer
• long: 64-bit signed integer
• float: single precision (32-bit) IEEE 754 floating-point number
• double: double precision (64-bit) IEEE 754 floating-point number
• bytes: sequence of 8-bit unsigned bytes
• string: unicode character sequence

Primitive types have no specified attributes.

Primitive type names are also defined type names. Thus, for example, the schema "string" is
equivalent to:
{"type": "string"}

2.2. Complex Types

Avro supports six kinds of complex types: records, enums, arrays, maps, unions and fixed.

2.2.1. Records

Records use the type name "record" and support three attributes:

Apache Avro# 1.8.1 Specification

Page 3
Copyright © 2012 The Apache Software Foundation. All rights reserved.

http://www.json.org/

• name: a JSON string providing the name of the record (required).
• namespace, a JSON string that qualifies the name;
• doc: a JSON string providing documentation to the user of this schema (optional).
• aliases: a JSON array of strings, providing alternate names for this record (optional).
• fields: a JSON array, listing fields (required). Each field is a JSON object with the

following attributes:
• name: a JSON string providing the name of the field (required), and
• doc: a JSON string describing this field for users (optional).
• type: A JSON object defining a schema, or a JSON string naming a record

definition (required).
• default: A default value for this field, used when reading instances that lack this

field (optional). Permitted values depend on the field's schema type, according to the
table below. Default values for union fields correspond to the first schema in the
union. Default values for bytes and fixed fields are JSON strings, where Unicode
code points 0-255 are mapped to unsigned 8-bit byte values 0-255.

avro type json type example

null null null

boolean boolean true

int,long integer 1

float,double number 1.1

bytes string "\u00FF"

string string "foo"

record object {"a": 1}

enum string "FOO"

array array [1]

map object {"a": 1}

fixed string "\u00ff"

Table 1: field default values
• order: specifies how this field impacts sort ordering of this record (optional). Valid

values are "ascending" (the default), "descending", or "ignore". For more details on
how this is used, see the the sort order section below.

• aliases: a JSON array of strings, providing alternate names for this field
(optional).

Apache Avro# 1.8.1 Specification

Page 4
Copyright © 2012 The Apache Software Foundation. All rights reserved.

For example, a linked-list of 64-bit values may be defined with:

{
"type": "record",
"name": "LongList",
"aliases": ["LinkedLongs"], // old name for this
"fields" : [
{"name": "value", "type": "long"}, // each element has a

long
{"name": "next", "type": ["null", "LongList"]} // optional next element

]
}

2.2.2. Enums

Enums use the type name "enum" and support the following attributes:

• name: a JSON string providing the name of the enum (required).
• namespace, a JSON string that qualifies the name;
• aliases: a JSON array of strings, providing alternate names for this enum (optional).
• doc: a JSON string providing documentation to the user of this schema (optional).
• symbols: a JSON array, listing symbols, as JSON strings (required). All symbols in an

enum must be unique; duplicates are prohibited. Every symbol must match the regular
expression [A-Za-z_][A-Za-z0-9_]* (the same requirement as for names).

For example, playing card suits might be defined with:

{ "type": "enum",
"name": "Suit",
"symbols" : ["SPADES", "HEARTS", "DIAMONDS", "CLUBS"]

}

2.2.3. Arrays

Arrays use the type name "array" and support a single attribute:

• items: the schema of the array's items.

For example, an array of strings is declared with:
{"type": "array", "items": "string"}

2.2.4. Maps

Maps use the type name "map" and support one attribute:

• values: the schema of the map's values.

Apache Avro# 1.8.1 Specification

Page 5
Copyright © 2012 The Apache Software Foundation. All rights reserved.

Map keys are assumed to be strings.

For example, a map from string to long is declared with:
{"type": "map", "values": "long"}

2.2.5. Unions

Unions, as mentioned above, are represented using JSON arrays. For example, ["null",
"string"] declares a schema which may be either a null or string.

(Note that when a default value is specified for a record field whose type is a union, the type
of the default value must match the first element of the union. Thus, for unions containing
"null", the "null" is usually listed first, since the default value of such unions is typically
null.)

Unions may not contain more than one schema with the same type, except for the named
types record, fixed and enum. For example, unions containing two array types or two map
types are not permitted, but two types with different names are permitted. (Names permit
efficient resolution when reading and writing unions.)

Unions may not immediately contain other unions.

2.2.6. Fixed

Fixed uses the type name "fixed" and supports two attributes:

• name: a string naming this fixed (required).
• namespace, a string that qualifies the name;
• aliases: a JSON array of strings, providing alternate names for this enum (optional).
• size: an integer, specifying the number of bytes per value (required).

For example, 16-byte quantity may be declared with:
{"type": "fixed", "size": 16, "name": "md5"}

2.3. Names

Record, enums and fixed are named types. Each has a fullname that is composed of two
parts; a name and a namespace. Equality of names is defined on the fullname.

The name portion of a fullname, record field names, and enum symbols must:

• start with [A-Za-z_]
• subsequently contain only [A-Za-z0-9_]

A namespace is a dot-separated sequence of such names. The empty string may also be used

Apache Avro# 1.8.1 Specification

Page 6
Copyright © 2012 The Apache Software Foundation. All rights reserved.

as a namespace to indicate the null namespace. Equality of names (including field names and
enum symbols) as well as fullnames is case-sensitive.

In record, enum and fixed definitions, the fullname is determined in one of the following
ways:

• A name and namespace are both specified. For example, one might use "name": "X",
"namespace": "org.foo" to indicate the fullname org.foo.X.

• A fullname is specified. If the name specified contains a dot, then it is assumed to be a
fullname, and any namespace also specified is ignored. For example, use "name":
"org.foo.X" to indicate the fullname org.foo.X.

• A name only is specified, i.e., a name that contains no dots. In this case the namespace is
taken from the most tightly enclosing schema or protocol. For example, if "name":
"X" is specified, and this occurs within a field of the record definition of org.foo.Y,
then the fullname is org.foo.X. If there is no enclosing namespace then the null
namespace is used.

References to previously defined names are as in the latter two cases above: if they contain a
dot they are a fullname, if they do not contain a dot, the namespace is the namespace of the
enclosing definition.

Primitive type names have no namespace and their names may not be defined in any
namespace.

A schema or protocol may not contain multiple definitions of a fullname. Further, a name
must be defined before it is used ("before" in the depth-first, left-to-right traversal of the
JSON parse tree, where the types attribute of a protocol is always deemed to come "before"
the messages attribute.)

2.4. Aliases

Named types and fields may have aliases. An implementation may optionally use aliases to
map a writer's schema to the reader's. This faciliates both schema evolution as well as
processing disparate datasets.

Aliases function by re-writing the writer's schema using aliases from the reader's schema. For
example, if the writer's schema was named "Foo" and the reader's schema is named "Bar"
and has an alias of "Foo", then the implementation would act as though "Foo" were named
"Bar" when reading. Similarly, if data was written as a record with a field named "x" and is
read as a record with a field named "y" with alias "x", then the implementation would act as
though "x" were named "y" when reading.

A type alias may be specified either as a fully namespace-qualified, or relative to the

Apache Avro# 1.8.1 Specification

Page 7
Copyright © 2012 The Apache Software Foundation. All rights reserved.

namespace of the name it is an alias for. For example, if a type named "a.b" has aliases of "c"
and "x.y", then the fully qualified names of its aliases are "a.c" and "x.y".

3. Data Serialization

Avro data is always serialized with its schema. Files that store Avro data should always also
include the schema for that data in the same file. Avro-based remote procedure call (RPC)
systems must also guarantee that remote recipients of data have a copy of the schema used to
write that data.

Because the schema used to write data is always available when the data is read, Avro data
itself is not tagged with type information. The schema is required to parse data.

In general, both serialization and deserialization proceed as a depth-first, left-to-right
traversal of the schema, serializing primitive types as they are encountered.

3.1. Encodings

Avro specifies two serialization encodings: binary and JSON. Most applications will use the
binary encoding, as it is smaller and faster. But, for debugging and web-based applications,
the JSON encoding may sometimes be appropriate.

3.2. Binary Encoding

3.2.1. Primitive Types

Primitive types are encoded in binary as follows:

• null is written as zero bytes.
• a boolean is written as a single byte whose value is either 0 (false) or 1 (true).
• int and long values are written using variable-length zig-zag coding. Some examples:

value hex

0 00

-1 01

1 02

-2 03

2 04

...

Apache Avro# 1.8.1 Specification

Page 8
Copyright © 2012 The Apache Software Foundation. All rights reserved.

http://lucene.apache.org/java/3_5_0/fileformats.html#VInt
http://code.google.com/apis/protocolbuffers/docs/encoding.html#types

-64 7f

64 80 01

...

• a float is written as 4 bytes. The float is converted into a 32-bit integer using a method
equivalent to Java's floatToIntBits and then encoded in little-endian format.

• a double is written as 8 bytes. The double is converted into a 64-bit integer using a
method equivalent to Java's doubleToLongBits and then encoded in little-endian format.

• bytes are encoded as a long followed by that many bytes of data.
• a string is encoded as a long followed by that many bytes of UTF-8 encoded

character data.

For example, the three-character string "foo" would be encoded as the long value 3
(encoded as hex 06) followed by the UTF-8 encoding of 'f', 'o', and 'o' (the hex bytes 66
6f 6f):
06 66 6f 6f

3.2.2. Complex Types

Complex types are encoded in binary as follows:

3.2.2.1. Records

A record is encoded by encoding the values of its fields in the order that they are declared. In
other words, a record is encoded as just the concatenation of the encodings of its fields. Field
values are encoded per their schema.

For example, the record schema

{
"type": "record",
"name": "test",
"fields" : [
{"name": "a", "type": "long"},
{"name": "b", "type": "string"}
]
}

An instance of this record whose a field has value 27 (encoded as hex 36) and whose b field
has value "foo" (encoded as hex bytes 06 66 6f 6f), would be encoded simply as the
concatenation of these, namely the hex byte sequence:
36 06 66 6f 6f

Apache Avro# 1.8.1 Specification

Page 9
Copyright © 2012 The Apache Software Foundation. All rights reserved.

http://java.sun.com/javase/6/docs/api/java/lang/Float.html#floatToIntBits%28float%29
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#doubleToLongBits%28double%29

3.2.2.2. Enums

An enum is encoded by a int, representing the zero-based position of the symbol in the
schema.

For example, consider the enum:

{"type": "enum", "name": "Foo", "symbols": ["A", "B", "C",
"D"] }

This would be encoded by an int between zero and three, with zero indicating "A", and 3
indicating "D".

3.2.2.3. Arrays

Arrays are encoded as a series of blocks. Each block consists of a long count value,
followed by that many array items. A block with count zero indicates the end of the array.
Each item is encoded per the array's item schema.

If a block's count is negative, its absolute value is used, and the count is followed
immediately by a long block size indicating the number of bytes in the block. This block
size permits fast skipping through data, e.g., when projecting a record to a subset of its fields.

For example, the array schema
{"type": "array", "items": "long"}

an array containing the items 3 and 27 could be encoded as the long value 2 (encoded as hex
04) followed by long values 3 and 27 (encoded as hex 06 36) terminated by zero:
04 06 36 00

The blocked representation permits one to read and write arrays larger than can be buffered
in memory, since one can start writing items without knowing the full length of the array.

3.2.2.4. Maps

Maps are encoded as a series of blocks. Each block consists of a long count value, followed
by that many key/value pairs. A block with count zero indicates the end of the map. Each
item is encoded per the map's value schema.

If a block's count is negative, its absolute value is used, and the count is followed
immediately by a long block size indicating the number of bytes in the block. This block
size permits fast skipping through data, e.g., when projecting a record to a subset of its fields.

The blocked representation permits one to read and write maps larger than can be buffered in

Apache Avro# 1.8.1 Specification

Page 10
Copyright © 2012 The Apache Software Foundation. All rights reserved.

memory, since one can start writing items without knowing the full length of the map.

3.2.2.5. Unions

A union is encoded by first writing a long value indicating the zero-based position within
the union of the schema of its value. The value is then encoded per the indicated schema
within the union.

For example, the union schema ["null","string"] would encode:

• null as zero (the index of "null" in the union):
00

• the string "a" as one (the index of "string" in the union, encoded as hex 02), followed
by the serialized string:
02 02 61

3.2.2.6. Fixed

Fixed instances are encoded using the number of bytes declared in the schema.

3.3. JSON Encoding

Except for unions, the JSON encoding is the same as is used to encode field default values.

The value of a union is encoded in JSON as follows:

• if its type is null, then it is encoded as a JSON null;
• otherwise it is encoded as a JSON object with one name/value pair whose name is the

type's name and whose value is the recursively encoded value. For Avro's named types
(record, fixed or enum) the user-specified name is used, for other types the type name is
used.

For example, the union schema ["null","string","Foo"], where Foo is a record
name, would encode:

• null as null;
• the string "a" as {"string": "a"}; and
• a Foo instance as {"Foo": {...}}, where {...} indicates the JSON encoding of a

Foo instance.

Note that a schema is still required to correctly process JSON-encoded data. For example, the
JSON encoding does not distinguish between int and long, float and double, records
and maps, enums and strings, etc.

Apache Avro# 1.8.1 Specification

Page 11
Copyright © 2012 The Apache Software Foundation. All rights reserved.

4. Sort Order

Avro defines a standard sort order for data. This permits data written by one system to be
efficiently sorted by another system. This can be an important optimization, as sort order
comparisons are sometimes the most frequent per-object operation. Note also that Avro
binary-encoded data can be efficiently ordered without deserializing it to objects.

Data items may only be compared if they have identical schemas. Pairwise comparisons are
implemented recursively with a depth-first, left-to-right traversal of the schema. The first
mismatch encountered determines the order of the items.

Two items with the same schema are compared according to the following rules.

• null data is always equal.
• boolean data is ordered with false before true.
• int, long, float and double data is ordered by ascending numeric value.
• bytes and fixed data are compared lexicographically by unsigned 8-bit values.
• string data is compared lexicographically by Unicode code point. Note that since

UTF-8 is used as the binary encoding for strings, sorting of bytes and string binary data is
identical.

• array data is compared lexicographically by element.
• enum data is ordered by the symbol's position in the enum schema. For example, an

enum whose symbols are ["z", "a"] would sort "z" values before "a" values.
• union data is first ordered by the branch within the union, and, within that, by the type

of the branch. For example, an ["int", "string"] union would order all int values
before all string values, with the ints and strings themselves ordered as defined above.

• record data is ordered lexicographically by field. If a field specifies that its order is:
• "ascending", then the order of its values is unaltered.
• "descending", then the order of its values is reversed.
• "ignore", then its values are ignored when sorting.

• map data may not be compared. It is an error to attempt to compare data containing maps
unless those maps are in an "order":"ignore" record field.

5. Object Container Files

Avro includes a simple object container file format. A file has a schema, and all objects
stored in the file must be written according to that schema, using binary encoding. Objects
are stored in blocks that may be compressed. Syncronization markers are used between
blocks to permit efficient splitting of files for MapReduce processing.

Files may include arbitrary user-specified metadata.

Apache Avro# 1.8.1 Specification

Page 12
Copyright © 2012 The Apache Software Foundation. All rights reserved.

A file consists of:

• A file header, followed by
• one or more file data blocks.

A file header consists of:

• Four bytes, ASCII 'O', 'b', 'j', followed by 1.
• file metadata, including the schema.
• The 16-byte, randomly-generated sync marker for this file.

File metadata is written as if defined by the following map schema:
{"type": "map", "values": "bytes"}

All metadata properties that start with "avro." are reserved. The following file metadata
properties are currently used:

• avro.schema contains the schema of objects stored in the file, as JSON data (required).
• avro.codec the name of the compression codec used to compress blocks, as a string.

Implementations are required to support the following codecs: "null" and "deflate". If
codec is absent, it is assumed to be "null". The codecs are described with more detail
below.

A file header is thus described by the following schema:

{"type": "record", "name": "org.apache.avro.file.Header",
"fields" : [
{"name": "magic", "type": {"type": "fixed", "name": "Magic", "size":

4}},
{"name": "meta", "type": {"type": "map", "values": "bytes"}},
{"name": "sync", "type": {"type": "fixed", "name": "Sync", "size": 16}},
]

}

A file data block consists of:

• A long indicating the count of objects in this block.
• A long indicating the size in bytes of the serialized objects in the current block, after any

codec is applied
• The serialized objects. If a codec is specified, this is compressed by that codec.
• The file's 16-byte sync marker.

Thus, each block's binary data can be efficiently extracted or skipped without deserializing
the contents. The combination of block size, object counts, and sync markers enable
detection of corrupt blocks and help ensure data integrity.

Apache Avro# 1.8.1 Specification

Page 13
Copyright © 2012 The Apache Software Foundation. All rights reserved.

5.1. Required Codecs

5.1.1. null

The "null" codec simply passes through data uncompressed.

5.1.2. deflate

The "deflate" codec writes the data block using the deflate algorithm as specified in RFC
1951, and typically implemented using the zlib library. Note that this format (unlike the "zlib
format" in RFC 1950) does not have a checksum.

5.2. Optional Codecs

5.2.1. snappy

The "snappy" codec uses Google's Snappy compression library. Each compressed block is
followed by the 4-byte, big-endian CRC32 checksum of the uncompressed data in the block.

6. Protocol Declaration

Avro protocols describe RPC interfaces. Like schemas, they are defined with JSON text.

A protocol is a JSON object with the following attributes:

• protocol, a string, the name of the protocol (required);
• namespace, an optional string that qualifies the name;
• doc, an optional string describing this protocol;
• types, an optional list of definitions of named types (records, enums, fixed and errors). An

error definition is just like a record definition except it uses "error" instead of "record".
Note that forward references to named types are not permitted.

• messages, an optional JSON object whose keys are message names and whose values are
objects whose attributes are described below. No two messages may have the same name.

The name and namespace qualification rules defined for schema objects apply to protocols as
well.

6.1. Messages

A message has attributes:

• a doc, an optional description of the message,

Apache Avro# 1.8.1 Specification

Page 14
Copyright © 2012 The Apache Software Foundation. All rights reserved.

http://www.isi.edu/in-notes/rfc1951.txt
http://www.isi.edu/in-notes/rfc1951.txt
http://code.google.com/p/snappy/

• a request, a list of named, typed parameter schemas (this has the same form as the fields
of a record declaration);

• a response schema;
• an optional union of declared error schemas. The effective union has "string"

prepended to the declared union, to permit transmission of undeclared "system" errors.
For example, if the declared error union is ["AccessError"], then the effective
union is ["string", "AccessError"]. When no errors are declared, the effective
error union is ["string"]. Errors are serialized using the effective union; however, a
protocol's JSON declaration contains only the declared union.

• an optional one-way boolean parameter.

A request parameter list is processed equivalently to an anonymous record. Since record field
lists may vary between reader and writer, request parameters may also differ between the
caller and responder, and such differences are resolved in the same manner as record field
differences.

The one-way parameter may only be true when the response type is "null" and no errors
are listed.

6.2. Sample Protocol

For example, one may define a simple HelloWorld protocol with:

{
"namespace": "com.acme",
"protocol": "HelloWorld",
"doc": "Protocol Greetings",

"types": [
{"name": "Greeting", "type": "record", "fields": [
{"name": "message", "type": "string"}]},

{"name": "Curse", "type": "error", "fields": [
{"name": "message", "type": "string"}]}

],

"messages": {
"hello": {
"doc": "Say hello.",
"request": [{"name": "greeting", "type": "Greeting" }],
"response": "Greeting",
"errors": ["Curse"]

}
}

}

Apache Avro# 1.8.1 Specification

Page 15
Copyright © 2012 The Apache Software Foundation. All rights reserved.

7. Protocol Wire Format

7.1. Message Transport

Messages may be transmitted via different transport mechanisms.

To the transport, a message is an opaque byte sequence.

A transport is a system that supports:

• transmission of request messages
• receipt of corresponding response messages

Servers may send a response message back to the client corresponding to a request
message. The mechanism of correspondance is transport-specific. For example, in HTTP
it is implicit, since HTTP directly supports requests and responses. But a transport that
multiplexes many client threads over a single socket would need to tag messages with
unique identifiers.

Transports may be either stateless or stateful. In a stateless transport, messaging assumes no
established connection state, while stateful transports establish connections that may be used
for multiple messages. This distinction is discussed further in the handshake section below.

7.1.1. HTTP as Transport

When HTTP is used as a transport, each Avro message exchange is an HTTP
request/response pair. All messages of an Avro protocol should share a single URL at an
HTTP server. Other protocols may also use that URL. Both normal and error Avro response
messages should use the 200 (OK) response code. The chunked encoding may be used for
requests and responses, but, regardless the Avro request and response are the entire content
of an HTTP request and response. The HTTP Content-Type of requests and responses should
be specified as "avro/binary". Requests should be made using the POST method.

HTTP is used by Avro as a stateless transport.

7.2. Message Framing

Avro messages are framed as a list of buffers.

Framing is a layer between messages and the transport. It exists to optimize certain
operations.

The format of framed message data is:

Apache Avro# 1.8.1 Specification

Page 16
Copyright © 2012 The Apache Software Foundation. All rights reserved.

http://www.w3.org/Protocols/rfc2616/rfc2616.html

• a series of buffers, where each buffer consists of:
• a four-byte, big-endian buffer length, followed by
• that many bytes of buffer data.

• A message is always terminated by a zero-length buffer.

Framing is transparent to request and response message formats (described below). Any
message may be presented as a single or multiple buffers.

Framing can permit readers to more efficiently get different buffers from different sources
and for writers to more efficiently store different buffers to different destinations. In
particular, it can reduce the number of times large binary objects are copied. For example, if
an RPC parameter consists of a megabyte of file data, that data can be copied directly to a
socket from a file descriptor, and, on the other end, it could be written directly to a file
descriptor, never entering user space.

A simple, recommended, framing policy is for writers to create a new segment whenever a
single binary object is written that is larger than a normal output buffer. Small objects are
then appended in buffers, while larger objects are written as their own buffers. When a reader
then tries to read a large object the runtime can hand it an entire buffer directly, without
having to copy it.

7.3. Handshake

The purpose of the handshake is to ensure that the client and the server have each other's
protocol definition, so that the client can correctly deserialize responses, and the server can
correctly deserialize requests. Both clients and servers should maintain a cache of recently
seen protocols, so that, in most cases, a handshake will be completed without extra round-trip
network exchanges or the transmission of full protocol text.

RPC requests and responses may not be processed until a handshake has been completed.
With a stateless transport, all requests and responses are prefixed by handshakes. With a
stateful transport, handshakes are only attached to requests and responses until a successful
handshake response has been returned over a connection. After this, request and response
payloads are sent without handshakes for the lifetime of that connection.

The handshake process uses the following record schemas:

{
"type": "record",
"name": "HandshakeRequest", "namespace":"org.apache.avro.ipc",
"fields": [
{"name": "clientHash",
"type": {"type": "fixed", "name": "MD5", "size": 16}},

Apache Avro# 1.8.1 Specification

Page 17
Copyright © 2012 The Apache Software Foundation. All rights reserved.

{"name": "clientProtocol", "type": ["null", "string"]},
{"name": "serverHash", "type": "MD5"},
{"name": "meta", "type": ["null", {"type": "map", "values": "bytes"}]}

]
}
{
"type": "record",
"name": "HandshakeResponse", "namespace": "org.apache.avro.ipc",
"fields": [
{"name": "match",
"type": {"type": "enum", "name": "HandshakeMatch",

"symbols": ["BOTH", "CLIENT", "NONE"]}},
{"name": "serverProtocol",
"type": ["null", "string"]},
{"name": "serverHash",
"type": ["null", {"type": "fixed", "name": "MD5", "size": 16}]},
{"name": "meta",
"type": ["null", {"type": "map", "values": "bytes"}]}

]
}

• A client first prefixes each request with a HandshakeRequest containing just the
hash of its protocol and of the server's protocol (clientHash!=null,
clientProtocol=null, serverHash!=null), where the hashes are 128-bit
MD5 hashes of the JSON protocol text. If a client has never connected to a given server,
it sends its hash as a guess of the server's hash, otherwise it sends the hash that it
previously obtained from this server.

• The server responds with a HandshakeResponse containing one of:
• match=BOTH, serverProtocol=null, serverHash=null if the client

sent the valid hash of the server's protocol and the server knows what protocol
corresponds to the client's hash. In this case, the request is complete and the response
data immediately follows the HandshakeResponse.

• match=CLIENT, serverProtocol!=null, serverHash!=null if the
server has previously seen the client's protocol, but the client sent an incorrect hash of
the server's protocol. The request is complete and the response data immediately
follows the HandshakeResponse. The client must use the returned protocol to process
the response and should also cache that protocol and its hash for future interactions
with this server.

• match=NONE if the server has not previously seen the client's protocol. The
serverHash and serverProtocol may also be non-null if the server's protocol
hash was incorrect.

In this case the client must then re-submit its request with its protocol text
(clientHash!=null, clientProtocol!=null, serverHash!=null)
and the server should respond with a successful match (match=BOTH,
serverProtocol=null, serverHash=null) as above.

Apache Avro# 1.8.1 Specification

Page 18
Copyright © 2012 The Apache Software Foundation. All rights reserved.

The meta field is reserved for future handshake enhancements.

7.4. Call Format

A call consists of a request message paired with its resulting response or error message.
Requests and responses contain extensible metadata, and both kinds of messages are framed
as described above.

The format of a call request is:

• request metadata, a map with values of type bytes
• the message name, an Avro string, followed by
• the message parameters. Parameters are serialized according to the message's request

declaration.

When the empty string is used as a message name a server should ignore the parameters and
return an empty response. A client may use this to ping a server or to perform a handshake
without sending a protocol message.

When a message is declared one-way and a stateful connection has been established by a
successful handshake response, no response data is sent. Otherwise the format of the call
response is:

• response metadata, a map with values of type bytes
• a one-byte error flag boolean, followed by either:

• if the error flag is false, the message response, serialized per the message's response
schema.

• if the error flag is true, the error, serialized per the message's effective error union
schema.

8. Schema Resolution

A reader of Avro data, whether from an RPC or a file, can always parse that data because its
schema is provided. But that schema may not be exactly the schema that was expected. For
example, if the data was written with a different version of the software than it is read, then
records may have had fields added or removed. This section specifies how such schema
differences should be resolved.

We call the schema used to write the data as the writer's schema, and the schema that the
application expects the reader's schema. Differences between these should be resolved as
follows:

Apache Avro# 1.8.1 Specification

Page 19
Copyright © 2012 The Apache Software Foundation. All rights reserved.

• It is an error if the two schemas do not match.

To match, one of the following must hold:

• both schemas are arrays whose item types match
• both schemas are maps whose value types match
• both schemas are enums whose names match
• both schemas are fixed whose sizes and names match
• both schemas are records with the same name
• either schema is a union
• both schemas have same primitive type
• the writer's schema may be promoted to the reader's as follows:

• int is promotable to long, float, or double
• long is promotable to float or double
• float is promotable to double
• string is promotable to bytes
• bytes is promotable to string

• if both are records:
• the ordering of fields may be different: fields are matched by name.
• schemas for fields with the same name in both records are resolved recursively.
• if the writer's record contains a field with a name not present in the reader's record,

the writer's value for that field is ignored.
• if the reader's record schema has a field that contains a default value, and writer's

schema does not have a field with the same name, then the reader should use the
default value from its field.

• if the reader's record schema has a field with no default value, and writer's schema
does not have a field with the same name, an error is signalled.

• if both are enums:
if the writer's symbol is not present in the reader's enum, then an error is signalled.

• if both are arrays:
This resolution algorithm is applied recursively to the reader's and writer's array item
schemas.

• if both are maps:
This resolution algorithm is applied recursively to the reader's and writer's value schemas.

• if both are unions:
The first schema in the reader's union that matches the selected writer's union schema is
recursively resolved against it. if none match, an error is signalled.

• if reader's is a union, but writer's is not

Apache Avro# 1.8.1 Specification

Page 20
Copyright © 2012 The Apache Software Foundation. All rights reserved.

The first schema in the reader's union that matches the writer's schema is recursively
resolved against it. If none match, an error is signalled.

• if writer's is a union, but reader's is not
If the reader's schema matches the selected writer's schema, it is recursively resolved
against it. If they do not match, an error is signalled.

A schema's "doc" fields are ignored for the purposes of schema resolution. Hence, the "doc"
portion of a schema may be dropped at serialization.

9. Parsing Canonical Form for Schemas

One of the defining characteristics of Avro is that a reader is assumed to have the "same"
schema used by the writer of the data the reader is reading. This assumption leads to a data
format that's compact and also amenable to many forms of schema evolution. However, the
specification so far has not defined what it means for the reader to have the "same" schema
as the writer. Does the schema need to be textually identical? Well, clearly adding or
removing some whitespace to a JSON expression does not change its meaning. At the same
time, reordering the fields of records clearly does change the meaning. So what does it mean
for a reader to have "the same" schema as a writer?

Parsing Canonical Form is a transformation of a writer's schema that let's us define what it
means for two schemas to be "the same" for the purpose of reading data written agains the
schema. It is called Parsing Canonical Form because the transformations strip away parts of
the schema, like "doc" attributes, that are irrelevant to readers trying to parse incoming data.
It is called Canonical Form because the transformations normalize the JSON text (such as
the order of attributes) in a way that eliminates unimportant differences between schemas. If
the Parsing Canonical Forms of two different schemas are textually equal, then those
schemas are "the same" as far as any reader is concerned, i.e., there is no serialized data that
would allow a reader to distinguish data generated by a writer using one of the original
schemas from data generated by a writing using the other original schema. (We sketch a
proof of this property in a companion document.)

The next subsection specifies the transformations that define Parsing Canonical Form. But
with a well-defined canonical form, it can be convenient to go one step further, transforming
these canonical forms into simple integers ("fingerprints") that can be used to uniquely
identify schemas. The subsection after next recommends some standard practices for
generating such fingerprints.

9.1. Transforming into Parsing Canonical Form

Apache Avro# 1.8.1 Specification

Page 21
Copyright © 2012 The Apache Software Foundation. All rights reserved.

Assuming an input schema (in JSON form) that's already UTF-8 text for a valid Avro schema
(including all quotes as required by JSON), the following transformations will produce its
Parsing Canonical Form:

• [PRIMITIVES] Convert primitive schemas to their simple form (e.g., int instead of
{"type":"int"}).

• [FULLNAMES] Replace short names with fullnames, using applicable namespaces to do
so. Then eliminate namespace attributes, which are now redundant.

• [STRIP] Keep only attributes that are relevant to parsing data, which are: type, name,
fields, symbols, items, values, size. Strip all others (e.g., doc and
aliases).

• [ORDER] Order the appearance of fields of JSON objects as follows: name, type,
fields, symbols, items, values, size. For example, if an object has type,
name, and size fields, then the name field should appear first, followed by the type
and then the size fields.

• [STRINGS] For all JSON string literals in the schema text, replace any escaped
characters (e.g., \uXXXX escapes) with their UTF-8 equivalents.

• [INTEGERS] Eliminate quotes around and any leading zeros in front of JSON integer
literals (which appear in the size attributes of fixed schemas).

• [WHITESPACE] Eliminate all whitespace in JSON outside of string literals.

9.2. Schema Fingerprints

"[A] fingerprinting algorithm is a procedure that maps an arbitrarily large data item (such as
a computer file) to a much shorter bit string, its fingerprint, that uniquely identifies the
original data for all practical purposes" (quoted from [Wikipedia]). In the Avro context,
fingerprints of Parsing Canonical Form can be useful in a number of applications; for
example, to cache encoder and decoder objects, to tag data items with a short substitute for
the writer's full schema, and to quickly negotiate common-case schemas between readers and
writers.

In designing fingerprinting algorithms, there is a fundamental trade-off between the length of
the fingerprint and the probability of collisions. To help application designers find
appropriate points within this trade-off space, while encouraging interoperability and ease of
implementation, we recommend using one of the following three algorithms when
fingerprinting Avro schemas:

• When applications can tolerate longer fingerprints, we recommend using the SHA-256
digest algorithm to generate 256-bit fingerprints of Parsing Canonical Forms. Most
languages today have SHA-256 implementations in their libraries.

• At the opposite extreme, the smallest fingerprint we recommend is a 64-bit Rabin
fingerprint. Below, we provide pseudo-code for this algorithm that can be easily

Apache Avro# 1.8.1 Specification

Page 22
Copyright © 2012 The Apache Software Foundation. All rights reserved.

http://en.wikipedia.org/wiki/Fingerprint_(computing)
http://en.wikipedia.org/wiki/SHA-2
http://en.wikipedia.org/wiki/SHA-2
http://en.wikipedia.org/wiki/Rabin_fingerprint
http://en.wikipedia.org/wiki/Rabin_fingerprint

translated into any programming language. 64-bit fingerprints should guarantee
uniqueness for schema caches of up to a million entries (for such a cache, the chance of a
collision is 3E-8). We don't recommend shorter fingerprints, as the chances of collisions
is too great (for example, with 32-bit fingerprints, a cache with as few as 100,000
schemas has a 50% chance of having a collision).

• Between these two extremes, we recommend using the MD5 message digest to generate
128-bit fingerprints. These make sense only where very large numbers of schemas are
being manipulated (tens of millions); otherwise, 64-bit fingerprints should be sufficient.
As with SHA-256, MD5 implementations are found in most libraries today.

These fingerprints are not meant to provide any security guarantees, even the longer
SHA-256-based ones. Most Avro applications should be surrounded by security measures
that prevent attackers from writing random data and otherwise interfering with the consumers
of schemas. We recommend that these surrounding mechanisms be used to prevent collision
and pre-image attacks (i.e., "forgery") on schema fingerprints, rather than relying on the
security properties of the fingerprints themselves.

Rabin fingerprints are cyclic redundancy checks computed using irreducible polynomials. In
the style of the Appendix of RFC 1952 (pg 10), which defines the CRC-32 algorithm, here's
our definition of the 64-bit AVRO fingerprinting algorithm:

long fingerprint64(byte[] buf) {
if (FP_TABLE == null) initFPTable();
long fp = EMPTY;
for (int i = 0; i < buf.length; i++)
fp = (fp >>> 8) ^ FP_TABLE[(int)(fp ^ buf[i]) & 0xff];

return fp;
}

static long EMPTY = 0xc15d213aa4d7a795L;
static long[] FP_TABLE = null;

void initFPTable() {
FP_TABLE = new long[256];
for (int i = 0; i < 256; i++) {
long fp = i;
for (int j = 0; j < 8; j++)
fp = (fp >>> 1) ^ (EMPTY & -(fp & 1L));

FP_TABLE[i] = fp;
}

}

Readers interested in the mathematics behind this algorithm may want to read this book
chapter. (Unlike RFC-1952 and the book chapter, we prepend a single one bit to messages.
We do this because CRCs ignore leading zero bits, which can be problematic. Our code
prepends a one-bit by initializing fingerprints using EMPTY, rather than initializing using

Apache Avro# 1.8.1 Specification

Page 23
Copyright © 2012 The Apache Software Foundation. All rights reserved.

http://en.wikipedia.org/wiki/MD5
http://en.wikipedia.org/wiki/Cyclic_redundancy_check
http://www.ietf.org/rfc/rfc1952.txt
http://www.scribd.com/fb-6001967/d/84795-Crc
http://www.scribd.com/fb-6001967/d/84795-Crc

zero as in RFC-1952 and the book chapter.)

10. Logical Types

A logical type is an Avro primitive or complex type with extra attributes to represent a
derived type. The attribute logicalType must always be present for a logical type, and is
a string with the name of one of the logical types listed later in this section. Other attributes
may be defined for particular logical types.

A logical type is always serialized using its underlying Avro type so that values are encoded
in exactly the same way as the equivalent Avro type that does not have a logicalType
attribute. Language implementations may choose to represent logical types with an
appropriate native type, although this is not required.

Language implementations must ignore unknown logical types when reading, and should use
the underlying Avro type. If a logical type is invalid, for example a decimal with scale
greater than its precision, then implementations should ignore the logical type and use the
underlying Avro type.

10.1. Decimal

The decimal logical type represents an arbitrary-precision signed decimal number of the
form unscaled × 10-scale.

A decimal logical type annotates Avro bytes or fixed types. The byte array must
contain the two's-complement representation of the unscaled integer value in big-endian byte
order. The scale is fixed, and is specified using an attribute.

The following attributes are supported:

• scale, a JSON integer representing the scale (optional). If not specified the scale is 0.
• precision, a JSON integer representing the (maximum) precision of decimals stored

in this type (required).

For example, the following schema represents decimal numbers with a maximum precision
of 4 and a scale of 2:

{
"type": "bytes",
"logicalType": "decimal",
"precision": 4,
"scale": 2

}

Precision must be a positive integer greater than zero. If the underlying type is a fixed, then

Apache Avro# 1.8.1 Specification

Page 24
Copyright © 2012 The Apache Software Foundation. All rights reserved.

the precision is limited by its size. An array of length n can store at most floor(log_10(28 × n
- 1 - 1)) base-10 digits of precision.

Scale must be zero or a positive integer less than or equal to the precision.

For the purposes of schema resolution, two schemas that are decimal logical types match if
their scales and precisions match.

10.2. Date

The date logical type represents a date within the calendar, with no reference to a particular
time zone or time of day.

A date logical type annotates an Avro int, where the int stores the number of days from
the unix epoch, 1 January 1970 (ISO calendar).

10.3. Time (millisecond precision)

The time-millis logical type represents a time of day, with no reference to a particular
calendar, time zone or date, with a precision of one millisecond.

A time-millis logical type annotates an Avro int, where the int stores the number of
milliseconds after midnight, 00:00:00.000.

10.4. Time (microsecond precision)

The time-micros logical type represents a time of day, with no reference to a particular
calendar, time zone or date, with a precision of one microsecond.

A time-micros logical type annotates an Avro long, where the long stores the number
of microseconds after midnight, 00:00:00.000000.

10.5. Timestamp (millisecond precision)

The timestamp-millis logical type represents an instant on the global timeline,
independent of a particular time zone or calendar, with a precision of one millisecond.

A timestamp-millis logical type annotates an Avro long, where the long stores the
number of milliseconds from the unix epoch, 1 January 1970 00:00:00.000 UTC.

10.6. Timestamp (microsecond precision)

The timestamp-micros logical type represents an instant on the global timeline,

Apache Avro# 1.8.1 Specification

Page 25
Copyright © 2012 The Apache Software Foundation. All rights reserved.

independent of a particular time zone or calendar, with a precision of one microsecond.

A timestamp-micros logical type annotates an Avro long, where the long stores the
number of microseconds from the unix epoch, 1 January 1970 00:00:00.000000 UTC.

10.7. Duration

The duration logical type represents an amount of time defined by a number of months,
days and milliseconds. This is not equivalent to a number of milliseconds, because,
depending on the moment in time from which the duration is measured, the number of days
in the month and number of milliseconds in a day may differ. Other standard periods such as
years, quarters, hours and minutes can be expressed through these basic periods.

A duration logical type annotates Avro fixed type of size 12, which stores three
little-endian unsigned integers that represent durations at different granularities of time. The
first stores a number in months, the second stores a number in days, and the third stores a
number in milliseconds.

Apache Avro, Avro, Apache, and the Avro and Apache logos are trademarks of The Apache
Software Foundation.

Apache Avro# 1.8.1 Specification

Page 26
Copyright © 2012 The Apache Software Foundation. All rights reserved.

	1 Introduction
	2 Schema Declaration
	2.1 Primitive Types
	2.2 Complex Types
	2.2.1 Records
	2.2.2 Enums
	2.2.3 Arrays
	2.2.4 Maps
	2.2.5 Unions
	2.2.6 Fixed

	2.3 Names
	2.4 Aliases

	3 Data Serialization
	3.1 Encodings
	3.2 Binary Encoding
	3.2.1 Primitive Types
	3.2.2 Complex Types
	3.2.2.1 Records
	3.2.2.2 Enums
	3.2.2.3 Arrays
	3.2.2.4 Maps
	3.2.2.5 Unions
	3.2.2.6 Fixed

	3.3 JSON Encoding

	4 Sort Order
	5 Object Container Files
	5.1 Required Codecs
	5.1.1 null
	5.1.2 deflate

	5.2 Optional Codecs
	5.2.1 snappy

	6 Protocol Declaration
	6.1 Messages
	6.2 Sample Protocol

	7 Protocol Wire Format
	7.1 Message Transport
	7.1.1 HTTP as Transport

	7.2 Message Framing
	7.3 Handshake
	7.4 Call Format

	8 Schema Resolution
	9 Parsing Canonical Form for Schemas
	9.1 Transforming into Parsing Canonical Form
	9.2 Schema Fingerprints

	10 Logical Types
	10.1 Decimal
	10.2 Date
	10.3 Time (millisecond precision)
	10.4 Time (microsecond precision)
	10.5 Timestamp (millisecond precision)
	10.6 Timestamp (microsecond precision)
	10.7 Duration

