
Copyright © 2012 The Apache Software Foundation. All rights reserved.

Apache Avro# 1.9.0 Getting Started
(Java)

Table of contents

1 Download..2

2 Defining a schema..3

3 Serializing and deserializing with code generation... 3

 3.1 Compiling the schema.. 3

 3.2 Creating Users...4

 3.3 Serializing... 5

 3.4 Deserializing... 5

 3.5 Compiling and running the example code..6

 3.6 Beta feature: Generating faster code.. 6

4 Serializing and deserializing without code generation.. 7

 4.1 Creating users... 7

 4.2 Serializing... 8

 4.3 Deserializing... 8

 4.4 Compiling and running the example code..9

Apache Avro# 1.9.0 Getting Started (Java)

Page 2Copyright © 2012 The Apache Software Foundation. All rights reserved.

This is a short guide for getting started with Apache Avro# using Java. This guide only
covers using Avro for data serialization; see Patrick Hunt's Avro RPC Quick Start for a good
introduction to using Avro for RPC.

1 Download

Avro implementations for C, C++, C#, Java, PHP, Python, and Ruby can be downloaded
from the Apache Avro# Releases page. This guide uses Avro 1.9.0, the latest version at
the time of writing. For the examples in this guide, download avro-1.9.0.jar and avro-
tools-1.9.0.jar.

Alternatively, if you are using Maven, add the following dependency to your POM:

<dependency>
 <groupId>org.apache.avro</groupId>
 <artifactId>avro</artifactId>
 <version>1.9.0</version>
</dependency>

As well as the Avro Maven plugin (for performing code generation):

<plugin>
 <groupId>org.apache.avro</groupId>
 <artifactId>avro-maven-plugin</artifactId>
 <version>1.9.0</version>
 <executions>
 <execution>
 <phase>generate-sources</phase>
 <goals>
 <goal>schema</goal>
 </goals>
 <configuration>
 <sourceDirectory>${project.basedir}/src/main/avro/</sourceDirectory>
 <outputDirectory>${project.basedir}/src/main/java/</outputDirectory>
 </configuration>
 </execution>
 </executions>
</plugin>
<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>1.8</source>
 <target>1.8</target>
 </configuration>
</plugin>

You may also build the required Avro jars from source. Building Avro is beyond the scope of
this guide; see the Build Documentation page in the wiki for more information.

https://github.com/phunt/avro-rpc-quickstart
http://avro.apache.org/releases.html
https://cwiki.apache.org/AVRO/Build+Documentation

Apache Avro# 1.9.0 Getting Started (Java)

Page 3Copyright © 2012 The Apache Software Foundation. All rights reserved.

2 Defining a schema

Avro schemas are defined using JSON. Schemas are composed of primitive types (null,
boolean, int, long, float, double, bytes, and string) and complex types
(record, enum, array, map, union, and fixed). You can learn more about Avro
schemas and types from the specification, but for now let's start with a simple schema
example, user.avsc:

{"namespace": "example.avro",
 "type": "record",
 "name": "User",
 "fields": [
 {"name": "name", "type": "string"},
 {"name": "favorite_number", "type": ["int", "null"]},
 {"name": "favorite_color", "type": ["string", "null"]}
]
}

This schema defines a record representing a hypothetical user. (Note that a schema file can
only contain a single schema definition.) At minimum, a record definition must include
its type ("type": "record"), a name ("name": "User"), and fields, in this case
name, favorite_number, and favorite_color. We also define a namespace
("namespace": "example.avro"), which together with the name attribute defines the
"full name" of the schema (example.avro.User in this case).

Fields are defined via an array of objects, each of which defines a name and type (other
attributes are optional, see the record specification for more details). The type attribute
of a field is another schema object, which can be either a primitive or complex type. For
example, the name field of our User schema is the primitive type string, whereas the
favorite_number and favorite_color fields are both unions, represented by
JSON arrays. unions are a complex type that can be any of the types listed in the array; e.g.,
favorite_number can either be an int or null, essentially making it an optional field.

3 Serializing and deserializing with code generation

3.1 Compiling the schema

Code generation allows us to automatically create classes based on our previously-defined
schema. Once we have defined the relevant classes, there is no need to use the schema
directly in our programs. We use the avro-tools jar to generate code as follows:

java -jar /path/to/avro-tools-1.9.0.jar compile schema <schema file> <destination>

spec.html#schema_primitive
spec.html#schema_complex
spec.html#schema_record

Apache Avro# 1.9.0 Getting Started (Java)

Page 4Copyright © 2012 The Apache Software Foundation. All rights reserved.

This will generate the appropriate source files in a package based on the schema's namespace
in the provided destination folder. For instance, to generate a User class in package
example.avro from the schema defined above, run

java -jar /path/to/avro-tools-1.9.0.jar compile schema user.avsc .

Note that if you using the Avro Maven plugin, there is no need to manually invoke the
schema compiler; the plugin automatically performs code generation on any .avsc files
present in the configured source directory.

3.2 Creating Users

Now that we've completed the code generation, let's create some Users, serialize them to a
data file on disk, and then read back the file and deserialize the User objects.

First let's create some Users and set their fields.

User user1 = new User();
user1.setName("Alyssa");
user1.setFavoriteNumber(256);
// Leave favorite color null

// Alternate constructor
User user2 = new User("Ben", 7, "red");

// Construct via builder
User user3 = User.newBuilder()
 .setName("Charlie")
 .setFavoriteColor("blue")
 .setFavoriteNumber(null)
 .build();

As shown in this example, Avro objects can be created either by invoking a constructor
directly or by using a builder. Unlike constructors, builders will automatically set any default
values specified in the schema. Additionally, builders validate the data as it set, whereas
objects constructed directly will not cause an error until the object is serialized. However,
using constructors directly generally offers better performance, as builders create a copy of
the datastructure before it is written.

Note that we do not set user1's favorite color. Since that record is of type ["string",
"null"], we can either set it to a string or leave it null; it is essentially optional.
Similarly, we set user3's favorite number to null (using a builder requires setting all fields,
even if they are null).

Apache Avro# 1.9.0 Getting Started (Java)

Page 5Copyright © 2012 The Apache Software Foundation. All rights reserved.

3.3 Serializing

Now let's serialize our Users to disk.

// Serialize user1, user2 and user3 to disk
DatumWriter<User> userDatumWriter = new SpecificDatumWriter<User>(User.class);
DataFileWriter<User> dataFileWriter = new DataFileWriter<User>(userDatumWriter);
dataFileWriter.create(user1.getSchema(), new File("users.avro"));
dataFileWriter.append(user1);
dataFileWriter.append(user2);
dataFileWriter.append(user3);
dataFileWriter.close();

We create a DatumWriter, which converts Java objects into an in-memory serialized
format. The SpecificDatumWriter class is used with generated classes and extracts the
schema from the specified generated type.

Next we create a DataFileWriter, which writes the serialized records, as well as the
schema, to the file specified in the dataFileWriter.create call. We write our users to
the file via calls to the dataFileWriter.append method. When we are done writing,
we close the data file.

3.4 Deserializing

Finally, let's deserialize the data file we just created.

// Deserialize Users from disk
DatumReader<User> userDatumReader = new SpecificDatumReader<User>(User.class);
DataFileReader<User> dataFileReader = new DataFileReader<User>(file, userDatumReader);
User user = null;
while (dataFileReader.hasNext()) {
// Reuse user object by passing it to next(). This saves us from
// allocating and garbage collecting many objects for files with
// many items.
user = dataFileReader.next(user);
System.out.println(user);
}

This snippet will output:

{"name": "Alyssa", "favorite_number": 256, "favorite_color": null}
{"name": "Ben", "favorite_number": 7, "favorite_color": "red"}
{"name": "Charlie", "favorite_number": null, "favorite_color": "blue"}

Deserializing is very similar to serializing. We create a SpecificDatumReader,
analogous to the SpecificDatumWriter we used in serialization, which converts in-
memory serialized items into instances of our generated class, in this case User. We pass

Apache Avro# 1.9.0 Getting Started (Java)

Page 6Copyright © 2012 The Apache Software Foundation. All rights reserved.

the DatumReader and the previously created File to a DataFileReader, analogous
to the DataFileWriter, which reads both the schema used by the writer as well as the
data from the file on disk. The data will be read using the writer's schema included in the file
and the schema provided by the reader, in this case the User class. The writer's schema is
needed to know the order in which fields were written, while the reader's schema is needed to
know what fields are expected and how to fill in default values for fields added since the file
was written. If there are differences between the two schemas, they are resolved according to
the Schema Resolution specification.

Next we use the DataFileReader to iterate through the serialized Users and print
the deserialized object to stdout. Note how we perform the iteration: we create a single
User object which we store the current deserialized user in, and pass this record object
to every call of dataFileReader.next. This is a performance optimization that
allows the DataFileReader to reuse the same User object rather than allocating a
new User for every iteration, which can be very expensive in terms of object allocation
and garbage collection if we deserialize a large data file. While this technique is the
standard way to iterate through a data file, it's also possible to use for (User user :
dataFileReader) if performance is not a concern.

3.5 Compiling and running the example code

This example code is included as a Maven project in the examples/java-example directory
in the Avro docs. From this directory, execute the following commands to build and run the
example:

$ mvn compile # includes code generation via Avro Maven plugin
$ mvn -q exec:java -Dexec.mainClass=example.SpecificMain

3.6 Beta feature: Generating faster code

In this release we have introduced a new approach to generating code that speeds up
decoding of objects by more than 10% and encoding by more than 30% (future performance
enhancements are underway). To ensure a smooth introduction of this change into
production systems, this feature is controlled by a feature flag, the system property
org.apache.avro.specific.use_custom_coders. In this first release, this
feature is off by default. To turn it on, set the system flag to true at runtime. In the sample
above, for example, you could enable the fater coders as follows:

$ mvn -q exec:java -Dexec.mainClass=example.SpecificMain \
 -Dorg.apache.avro.specific.use_custom_coders=true

spec.html#Schema+Resolution

Apache Avro# 1.9.0 Getting Started (Java)

Page 7Copyright © 2012 The Apache Software Foundation. All rights reserved.

Note that you do not have to recompile your Avro schema to have access to this feature.
The feature is compiled and built into your code, and you turn it on and off at runtime using
the feature flag. As a result, you can turn it on during testing, for example, and then off in
production. Or you can turn it on in production, and quickly turn it off if something breaks.

We encourage the Avro community to exercise this new feature early to help build
confidence. (For those paying one-demand for compute resources in the cloud, it can lead to
meaningful cost savings.) As confidence builds, we will turn this feature on by default, and
eventually eliminate the feature flag (and the old code).

4 Serializing and deserializing without code generation

Data in Avro is always stored with its corresponding schema, meaning we can always read a
serialized item regardless of whether we know the schema ahead of time. This allows us to
perform serialization and deserialization without code generation.

Let's go over the same example as in the previous section, but without using code generation:
we'll create some users, serialize them to a data file on disk, and then read back the file and
deserialize the users objects.

4.1 Creating users

First, we use a Parser to read our schema definition and create a Schema object.

Schema schema = new Schema.Parser().parse(new File("user.avsc"));

Using this schema, let's create some users.

GenericRecord user1 = new GenericData.Record(schema);
user1.put("name", "Alyssa");
user1.put("favorite_number", 256);
// Leave favorite color null

GenericRecord user2 = new GenericData.Record(schema);
user2.put("name", "Ben");
user2.put("favorite_number", 7);
user2.put("favorite_color", "red");

Since we're not using code generation, we use GenericRecords to represent users.
GenericRecord uses the schema to verify that we only specify valid fields. If we try to
set a non-existent field (e.g., user1.put("favorite_animal", "cat")), we'll get
an AvroRuntimeException when we run the program.

Note that we do not set user1's favorite color. Since that record is of type ["string",
"null"], we can either set it to a string or leave it null; it is essentially optional.

Apache Avro# 1.9.0 Getting Started (Java)

Page 8Copyright © 2012 The Apache Software Foundation. All rights reserved.

4.2 Serializing

Now that we've created our user objects, serializing and deserializing them is almost identical
to the example above which uses code generation. The main difference is that we use generic
instead of specific readers and writers.

First we'll serialize our users to a data file on disk.

// Serialize user1 and user2 to disk
File file = new File("users.avro");
DatumWriter<GenericRecord> datumWriter = new GenericDatumWriter<GenericRecord>(schema);
DataFileWriter<GenericRecord> dataFileWriter = new
 DataFileWriter<GenericRecord>(datumWriter);
dataFileWriter.create(schema, file);
dataFileWriter.append(user1);
dataFileWriter.append(user2);
dataFileWriter.close();

We create a DatumWriter, which converts Java objects into an in-memory serialized
format. Since we are not using code generation, we create a GenericDatumWriter. It
requires the schema both to determine how to write the GenericRecords and to verify
that all non-nullable fields are present.

As in the code generation example, we also create a DataFileWriter, which
writes the serialized records, as well as the schema, to the file specified in the
dataFileWriter.create call. We write our users to the file via calls to the
dataFileWriter.append method. When we are done writing, we close the data file.

4.3 Deserializing

Finally, we'll deserialize the data file we just created.

// Deserialize users from disk
DatumReader<GenericRecord> datumReader = new GenericDatumReader<GenericRecord>(schema);
DataFileReader<GenericRecord> dataFileReader = new DataFileReader<GenericRecord>(file,
 datumReader);
GenericRecord user = null;
while (dataFileReader.hasNext()) {
// Reuse user object by passing it to next(). This saves us from
// allocating and garbage collecting many objects for files with
// many items.
user = dataFileReader.next(user);
System.out.println(user);

This outputs:

{"name": "Alyssa", "favorite_number": 256, "favorite_color": null}
{"name": "Ben", "favorite_number": 7, "favorite_color": "red"}

Apache Avro# 1.9.0 Getting Started (Java)

Page 9Copyright © 2012 The Apache Software Foundation. All rights reserved.

Deserializing is very similar to serializing. We create a GenericDatumReader,
analogous to the GenericDatumWriter we used in serialization, which converts in-
memory serialized items into GenericRecords. We pass the DatumReader and the
previously created File to a DataFileReader, analogous to the DataFileWriter,
which reads both the schema used by the writer as well as the data from the file on disk.
The data will be read using the writer's schema included in the file, and the reader's schema
provided to the GenericDatumReader. The writer's schema is needed to know the
order in which fields were written, while the reader's schema is needed to know what fields
are expected and how to fill in default values for fields added since the file was written. If
there are differences between the two schemas, they are resolved according to the Schema
Resolution specification.

Next, we use the DataFileReader to iterate through the serialized users and print
the deserialized object to stdout. Note how we perform the iteration: we create a single
GenericRecord object which we store the current deserialized user in, and pass
this record object to every call of dataFileReader.next. This is a performance
optimization that allows the DataFileReader to reuse the same record object rather than
allocating a new GenericRecord for every iteration, which can be very expensive in
terms of object allocation and garbage collection if we deserialize a large data file. While
this technique is the standard way to iterate through a data file, it's also possible to use for
(GenericRecord user : dataFileReader) if performance is not a concern.

4.4 Compiling and running the example code

This example code is included as a Maven project in the examples/java-example directory
in the Avro docs. From this directory, execute the following commands to build and run the
example:

$ mvn compile
$ mvn -q exec:java -Dexec.mainClass=example.GenericMain

spec.html#Schema+Resolution
spec.html#Schema+Resolution

	Table of contents
	1 Download
	2 Defining a schema
	3 Serializing and deserializing with code generation
	3.1 Compiling the schema
	3.2 Creating Users
	3.3 Serializing
	3.4 Deserializing
	3.5 Compiling and running the example code
	3.6 Beta feature: Generating faster code

	4 Serializing and deserializing without code generation
	4.1 Creating users
	4.2 Serializing
	4.3 Deserializing
	4.4 Compiling and running the example code

