| 
 | ||||||||||
| PREV PACKAGE NEXT PACKAGE | FRAMES NO FRAMES | |||||||||
See:
          Description
| Class Summary | |
|---|---|
| AvroCollector<T> | A collector for map and reduce output. | 
| AvroInputFormat<T> | An InputFormatfor Avro data files | 
| AvroJob | Setters to configure jobs for Avro data. | 
| AvroKey<T> | The wrapper of keys for jobs configured with AvroJob. | 
| AvroKeyComparator<T> | The RawComparatorused by jobs configured withAvroJob. | 
| AvroMapper<IN,OUT> | A mapper for Avro data. | 
| AvroOutputFormat<T> | An OutputFormatfor Avro data files. | 
| AvroRecordReader<T> | An RecordReaderfor Avro data files. | 
| AvroReducer<K,V,OUT> | A reducer for Avro data. | 
| AvroSerialization<T> | The Serializationused by jobs configured withAvroJob. | 
| AvroUtf8InputFormat | An InputFormatfor text files. | 
| AvroValue<T> | The wrapper of values for jobs configured with AvroJob. | 
| AvroWrapper<T> | The wrapper of data for jobs configured with AvroJob. | 
| FsInput | Adapt an FSDataInputStreamtoSeekableInput. | 
| Pair<K,V> | A key/value pair. | 
| SequenceFileInputFormat<K,V> | An InputFormatfor sequence files. | 
| SequenceFileReader<K,V> | A FileReaderfor sequence files. | 
| SequenceFileRecordReader<K,V> | A RecordReaderfor sequence files. | 
Run Hadoop MapReduce jobs over Avro data, with map and reduce functions written in Java.
Avro data files do not contain key/value pairs as expected by Hadoop's MapReduce API, but rather just a sequence of values. Thus we provide here a layer on top of Hadoop's MapReduce API which eliminates the key/value distinction.
To use this for jobs whose input and output are Avro data files:
AvroJob.setInputSchema(org.apache.hadoop.mapred.JobConf, org.apache.avro.Schema) and
   AvroJob.setOutputSchema(org.apache.hadoop.mapred.JobConf, org.apache.avro.Schema) with your
   job's input and output schemas.AvroMapper and specify
   this as your job's mapper with AvroJob.setMapperClass(org.apache.hadoop.mapred.JobConf, java.lang.Class extends org.apache.avro.mapred.AvroMapper>)AvroReducer and specify
   this as your job's reducer and perhaps combiner, with AvroJob.setReducerClass(org.apache.hadoop.mapred.JobConf, java.lang.Class extends org.apache.avro.mapred.AvroReducer>) and AvroJob.setCombinerClass(org.apache.hadoop.mapred.JobConf, java.lang.Class extends org.apache.avro.mapred.AvroReducer>)FileInputFormat.setInputPaths(org.apache.hadoop.mapred.JobConf, java.lang.String)FileOutputFormat.setOutputPath(org.apache.hadoop.mapred.JobConf, org.apache.hadoop.fs.Path)JobClient.runJob(org.apache.hadoop.mapred.JobConf)
| 
 | ||||||||||
| PREV PACKAGE NEXT PACKAGE | FRAMES NO FRAMES | |||||||||